题目链接:
Eureka
Time Limit: 8000/4000 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Professor Zhang draws n points on the plane, which are conveniently labeled by 1,2,...,n. The i-th point is at (xi,yi). Professor Zhang wants to know the number of best sets. As the value could be very large, print it modulo 109+7.
A set P (P contains the label of the points) is called best set if and only if there are at least one best pair in P. Two numbers u and v (u,v∈P,u≠v) are called best pair, if for every w∈P, f(u,v)≥g(u,v,w), where f(u,v)=(xu−xv)2+(yu−yv)2−−−−−−−−−−−−−−−−−−−√ and g(u,v,w)=f(u,v)+f(v,w)+f(w,u)2.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤1000) -- then number of points.
Each of the following n lines contains two integers xi and yi (−109≤xi,yi≤109) -- coordinates of the i-th point.
Output
For each test case, output an integer denoting the answer.
Sample Input
3
3
1 1
1 1
1 1
3
0 0
0 1
1 0
1
0 0
Sample Output
4
3
0
题意:
给 n个点,大于等于2个在同一条直线上的点可以构成一个集合,问你现在有多少个集合;
思路:
先把给的这些点按坐标排序,然后按顺序选一个点i,这个点i作为一定选到集合里面的点,然后再选枚举这个点之后的点j,形成一条直线,再看这条直线上没有被访问过的点k(i<k<n&&k!=j)有多少;假设有num个,那么就可以形成包含点i的集合2^num-1,同时这些点里面有重合的点,还有就是为降低复杂度,要用极角排序,但是最后判断的时候极角排序的精度好像又不太够,所有我就直接用原来的坐标判断的;
AC代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <bits/stdc++.h> #include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++) #define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) { char CH; bool F=false; for(CH=getchar();CH<‘0‘||CH>‘9‘;F= CH==‘-‘,CH=getchar()); for(num=0;CH>=‘0‘&&CH<=‘9‘;num=num*10+CH-‘0‘,CH=getchar()); F && (num=-num); } int stk[70], tp; template<class T> inline void print(T p) { if(!p) { puts("0"); return; } while(p) stk[++ tp] = p%10, p/=10; while(tp) putchar(stk[tp--] + ‘0‘); putchar(‘\n‘); } const LL mod=1e9+7; const double PI=acos(-1.0); const int inf=1e9; const int N=1e5+10; const int maxn=500+10; const double eps=1e-9; int n,vis[1010]; LL fx,fy,f[1010]; struct node { double ang; LL x,y; }po[1010],temp[1010]; int cmp1(node a,node b) { return a.ang<b.ang; } int cmp(node a,node b) { if(a.y==b.y)return a.x<b.x; return a.y<b.y; } int main() { int t; read(t); f[0]=1; For(i,1,1008) { f[i]=f[i-1]*2%mod; } while(t--) { read(n); For(i,1,n) { read(po[i].x);read(po[i].y); } sort(po+1,po+n+1,cmp); LL ans=0; For(i,1,n-1) { int cnt=0,s=0; For(j,i+1,n) { if(po[j].x==po[i].x&&po[j].y==po[i].y){s++;continue;} temp[++cnt].ang=atan2(po[j].y-po[i].y,po[j].x-po[i].x); temp[cnt].x=po[j].x; temp[cnt].y=po[j].y; } sort(temp+1,temp+cnt+1,cmp1); fx=po[i].x,fy=po[i].y; int d=0; for(int j=1;j<=cnt;) { int k,num=s+1; for(k=j+1;k<=cnt;k++) { if((temp[k].y-fy)*(temp[j].x-fx)!=(temp[j].y-fy)*(temp[k].x-fx))break; num++; } j=k; ans=(ans+f[num]-1+mod)%mod; d++; } ans=(ans-(LL)(d-1)*(f[s]-1+mod)%mod+mod)%mod; } cout<<ans<<endl; } return 0; }