POJ 2155 Matrix 【二维树状数组】

题目链接:http://poj.org/problem?id=2155

题目大意:给出一个N*N的0矩阵,下面给出两种指令:1. 给出的第一个数据为‘C’,再给出四个整形数据,x1,y1,y1,y2,对以(x1,y1)(x2,y2)分别为左上角和右下角坐标的矩阵内的元素进行反转(0变1,1变0)         2. 给出的第一个数据为‘Q’,再给出两个数据,x,y,然后输出此时这个坐标上的元素。

这题用二维树状数组解,树状数组能够对某区间更新所有元素的和,树状数组维护的是c[1][1]到c[i][j]之内的所有元素的和,更新的也是这个区间和。因为这里元素类型只有0,1,所以对于区间和来说只有奇偶之分,更新偶数次相当于没有改变其有效值。所以更新(x1,y1)(x2,y2)内的元素,只需要Update(x2,y2),Update(x1-1,y2),Update(x2,y1-1),Update(x1-1,y1-1)这几个语句分别执行一次即可,最后输出区间和模2就能得到答案。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define N 1001

using namespace std;
int c[N][N];
int n;
int Lowbit(int x)
{
    return x & (-x);
}
void Update(int x,int y){
    for(int i=x;i>0;i-=Lowbit(i))
        for(int j=y;j>0;j-=Lowbit(j))
            c[i][j]++;
}
int Getsum(int x,int y){
    int ret=0;
    for(int i=x;i<=n;i+=Lowbit(i))
        for(int j=y;j<=n;j+=Lowbit(j))
           ret+=c[i][j];
    return ret;
}
int main()
{
    int x;
    scanf("%d",&x);
    while(x--)
    {
        memset(c,0,sizeof(c));
        int T;
        int x,y,x1,y1,x2,y2;
        char ch[2];
        scanf("%d%d",&n,&T);
        while (T--)
        {
            scanf("%s",ch);
            if(ch[0]=='C')
            {
                scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
                Update(x2,y2);
                Update(x1-1,y2);
                Update(x2,y1-1);
                Update(x1-1,y1-1);
            }
            else if(ch[0]=='Q')
            {
                scanf("%d%d",&x,&y);
                printf("%d\n",Getsum(x,y)%2);
            }
        }
        printf("\n");
    }
    return 0;
}



POJ 2155 Matrix 【二维树状数组】

时间: 2024-10-15 20:53:09

POJ 2155 Matrix 【二维树状数组】的相关文章

POJ 2155 Matrix(二维树状数组,绝对具体)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ 2155 Matrix(二维树状数组,绝对详细)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ - 2155 Matrix (二维树状数组 + 区间改动 + 单点求值 或者 二维线段树 + 区间更新 + 单点求值)

POJ - 2155 Matrix Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we ha

POJ 2155 Matrix 二维树状数组

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 19174   Accepted: 7207 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ 题目2155 Matrix(二维树状数组)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20303   Accepted: 7580 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ2155 Matrix 二维树状数组的应用

有两种方法吧,一个是利用了树状数组的性质,很HDU1556有点类似,还有一种就是累加和然后看奇偶来判断答案 题意:给你一个n*n矩阵,然后q个操作,C代表把以(x1,y1)为左上角到以(x2,y2)为右下角的矩阵取反,意思就是矩阵只有0,1元素,是0的变1,是1的变0,Q代表当前(x,y)这个点的状况,是0还是1? 区间修改有点特别,但是若区间求和弄懂了应该马上就能懂得: add(x2,y2,1); add(x2,y1,-1);//上面多修改了不需要的一部分,所以修改回来 add(x1,y2,-

Matrix 二维树状数组的第二类应用

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17976   Accepted: 6737 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

[poj2155]Matrix(二维树状数组)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ 1195-Mobile phones(二维树状数组-区间更新区间查询)

Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 17661   Accepted: 8173 Description Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows. The area is divided into squares. The

POJ2155 Matrix 二维树状数组应用

一个N*N(1<=N<=1000)的矩阵,从(1,1)开始,给定一些操作C和一些查询Q,一共K条(1<=K<=50000): C x1,y1,x2,y2 表示从x1行y1列到x2行y2列的元素全部反转(0变成1,1变成0): Q x y表示询问x行y列的元素是0还是1. 题目乍一看感觉还是很难,如果能记录每一个元素的状态值,那答案是显而易见的,但是元素过多,如果每次都对每一个元素进行更新状态的话,复杂度太高.实际上只要记录边界的特定坐标的反转次数,最好的选择那就是二维树状数组了.