mnist测试

CPU
real    8m15.128s
user    16m28.027s
sys    0m10.905s

LeNet GPU
real    5m29.271s
user    4m40.408s
sys    0m56.865s

GPU - CUDNN
real    2m12.385s
user    1m54.567s
sys    0m24.123s

时间: 2024-12-17 04:55:36

mnist测试的相关文章

利用mnist训练集生成的caffemodel对mnist测试集与自己手写的数字进行测试

从一到二:利用mnist训练集生成的caffemodel对mnist测试集与自己手写的数字进行测试 通过从零到一的教程,我们已经得到了通过mnist训练集生成的caffemodel,主要包含下面四个文件: 接下来就可以利用模型进行测试了.关于测试方法按照上篇教程还是选择bat文件,当然python.matlab更为方便,比如可以迅速把识别错误的图片显示出来. 一.均值文件mean.binaryproto 在进行分类之前首先需要产生所有图片的平均值图片,真正分类时的每个图片都会先减去这张平均值图片

Caffe在Linux服务器下的安装及示例程序mnist测试

Caffe安装 首先需要从网站https://github.com/BVLC/caffe下载压缩包上传到Linux服务器,解压文件.然后执行make all,不报错则表示caffe已经编译好,export设置环境变量如下: export PYTHONPATH=~/caffe/python #caffe的路径下面的python mnist示例测试 首先进入caffe-master/data/mnist目录下,运行命令: $sh get_mnist.sh 然后在caffe目录下运行examples/

CAFFE安装(10):Mnist测试(可不做)

1. 数据预处理 $ sh data/mnist/get_mnist.sh 2. 重建lmdb文件.Caffe支持多种数据格式输入网络,包括Image(.jpg, .png等),leveldb,lmdb,HDF5等,根据自己需要选择不同输入吧. $ sh examples/mnist/create_mnist.sh 生成mnist-train-lmdb 和 mnist-train-lmdb文件夹,这里包含了lmdb格式的数据集 3. 训练mnist $ sh examples/mnist/tra

windows下的cafee训练和测试mnist数据集

一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都

windows环境Caffe安装配置步骤(无GPU)及mnist训练

在硕士第二年,义无反顾地投身到了深度学习的浪潮中.从之前的惯性导航转到这个方向,一切从头开始,在此,仅以此文记录自己的打怪之路. 最初的想法是动手熟悉Caffe,考虑到直接上手Ubuntu会有些难度,所以首先在windows环境下打个基础.有个插曲,台式机由于某些原因只能保持在32位系统,编译caffe.cpp时才发现系统不兼容,然后才换到64位的笔记本上进行操作. 前期准备:1.VS 2013   2. windows版的Caffe(https://github.com/BVLC/caffe/

TensorFlow训练MNIST数据集(3) —— 卷积神经网络

前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%.在换用多层神经网络后,正确率已有很大的提升.这次将采用卷积神经网络继续进行测试. 1.模型基本结构 如下图所示,本次采用的模型共有8层(包含dropout层).其中卷积层和池化层各有两层. 在整个模型中,输入层负责数据输入:卷积层负责提取图片的特征:池化层采用最大池化的方式,突出主要特征,并减少参数维度:全连接层再将个特征组合起来:dropout层可以减少每次训练的计算量,并可以一定程度上避免过

Caffe实例

下载链接以及说明: 1.caffe代码按照官方教程下载windows分支下面的就可以了(https://github.com/BVLC/caffe/tree/windows). 2.cmake(https://cmake.org/download/) 3.miniconda3  python3.6  x64(https://conda.io/miniconda.html) (注意:官方只能下载python 3.6版本的,在安装完python3.6版本的miniconda之后,注意在安装的时候将目

论文翻译:BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or ?1

目录 BinaryNet:通过权重和激活约束为+1或-1训练深度神经网络 摘要 引言 1.BinaryNet 符号函数 梯度计算和累积 通过离散化传播梯度 一些有用的成分 算法1 使用BinaryNet训练DNN 算法2 批量标准化转换(Ioffe和Szegedy,2015),适用于小批量激活x. 算法3 ADAM学习规则(Kingma&Ba,2014). 2.基准测试结果 MLP on MNIST ConvNet on CIFAR-10 ConvNet on SVHN 3.在运行时更快 第一层

Convolutional Neural Network in TensorFlow

翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创建稠密(全连接)层和卷积层,添加激活函数,应用dropout regularization的方法.本教程将介绍如何使用layer来构建卷积神经网络来识别MNIST数据集中的手写数字. MNIST数据集由60,000训练样例和10,000测试样例组成,全部都是0-9的手写数字,每个样例由28x28大小