Spark Streaming 执行流程

Spark Streaming 是基于spark的流式批处理引擎,其基本原理是把输入数据以某一时间间隔批量的处理,当批处理间隔缩短到秒级时,便可以用于处理实时数据流。

本节描述了Spark Streaming作业的执行流程。

图1 Spark Streaming作业的执行流程

具体流程:

  1. 客户端提交作业后启动Driver,Driver是park作业的Master。
  2. 每个作业包含多个Executor,每个Executor以线程的方式运行task,Spark Streaming至少包含一个receiver task。
  3. Receiver接收数据后生成Block,并把BlockId汇报给Driver,然后备份到另外一个Executor上。
  4. ReceiverTracker维护Reciver汇报的BlockId。
  5. Driver定时启动JobGenerator,根据Dstream的关系生成逻辑RDD,然后创建Jobset,交给JobScheduler。
  6. JobScheduler负责调度Jobset,交给DAGScheduler,DAGScheduler根据逻辑RDD,生成相应的Stages,每个stage包含一到多个task。
  7. TaskScheduler负责把task调度到Executor上,并维护task的运行状态。
  8. 当tasks,stages,jobset完成后,单个batch才算完成。
时间: 2024-09-30 16:05:34

Spark Streaming 执行流程的相关文章

自己编写的spark代码执行流程

我们自己编写了spark代码后;放到集群中一执行,就会出现问题,没有序列化.指定的配置文件不存在.classnotfound等等.这其实很多时候就是因为我们对自己编写的spark代码执行流程的不熟悉导致的,源码阅读可以解决,但源码不是每个人都能看懂或能看进去的,下面我们就来讲一下,我们自己写的spark代码究竟是这么执行的.从执行的过程可分为三个部分来分析main方法,RDD处理方法,DStream处理方法,从执行的JVM虚拟机可以分为两个部分driver端,worker端 一.main方法 m

Spark Streaming运行流程及源码解析(二)

目录 写在前面 开干 启动流处理引擎 StreamingContext的创建 outputOperator算子注册 StreamingContext的启动 接收并存储数据 Driver端ReceiverTracker的操作 Executor端ReceiverSupervisor的操作 开始接收数据.存储数据 生成job.执行job JobGenerator介绍 生成job 提交执行job 输出数据 Spark Streaming源码流程解析. 写在前面 以下是我自己梳理了一遍Spark Stre

Spark Streaming实践和优化

发表于:<程序员>杂志2016年2月刊.链接:http://geek.csdn.net/news/detail/54500 作者:徐鑫,董西成 在流式计算领域,Spark Streaming和Storm时下应用最广泛的两个计算引擎.其中,Spark Streaming是Spark生态系统中的重要组成部分,在实现上复用Spark计算引擎.如图1所示,Spark Streaming支持的数据源有很多,如Kafka.Flume.TCP等.Spark Streaming的内部数据表示形式为DStrea

第93课:Spark Streaming updateStateByKey案例实战和内幕源码解密

本节课程主要分二个部分: 一.Spark Streaming updateStateByKey案例实战二.Spark Streaming updateStateByKey源码解密 第一部分: updateStateByKey的主要功能是随着时间的流逝,在Spark Streaming中可以为每一个可以通过CheckPoint来维护一份state状态,通过更新函数对该key的状态不断更新:对每一个新批次的数据(batch)而言,Spark Streaming通过使用updateStateByKey

基于案例贯通 Spark Streaming 流计算框架的运行源码

本期内容 : Spark Streaming+Spark SQL案例展示 基于案例贯穿Spark Streaming的运行源码 一. 案例代码阐述 : 在线动态计算电商中不同类别中最热门的商品排名,例如:手机类别中最热门的三种手机.电视类别中最热门的三种电视等. 1.案例运行代码 : import org.apache.spark.SparkConf import org.apache.spark.sql.Row import org.apache.spark.sql.hive.HiveCont

第93讲:Spark Streaming updateStateByKey案例实战和内幕源码

本节课程主要分二个部分: 一.Spark Streaming updateStateByKey案例实战 二.Spark Streaming updateStateByKey源码解密 第一部分: updateStateByKey它的主要功能是随着时间的流逝,在Spark Streaming中可以为每一个key可以通过CheckPoint来维护一份state状态,通过更新函数对该key的状态不断更新:在更新的时候,对每一个新批次的数据(batch)而言,Spark Streaming通过使用upda

第88课:Spark Streaming从Flume Poll数据案例实战和内幕源码解密

本节课分成二部分讲解: 一.Spark Streaming on Polling from Flume实战 二.Spark Streaming on Polling from Flume源码 第一部分: 推模式(Flume push SparkStreaming) VS 拉模式(SparkStreaming poll Flume) 采用推模式:推模式的理解就是Flume作为缓存,存有数据.监听对应端口,如果服务可以链接,就将数据push过去.(简单,耦合要低),缺点是SparkStreaming

Spark Streaming连接TCP Socket

1.Spark Streaming是什么 Spark Streaming是在Spark上建立的可扩展的高吞吐量实时处理流数据的框架,数据可以是来自多种不同的源,例如kafka,Flume,Twitter,ZeroMQ或者TCP Socket等.在这个框架下,支持对流数据的各种运算,比如map,reduce,join等.处理过后的数据可以存储到文件系统或数据库. 利用Spark Streaming,你可以使用与批量加载数据相同的API来创建数据管道,并通过数据管道处理流式数据.此外,Spark S

【Streaming】30分钟概览Spark Streaming 实时计算

本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark Streaming相对其他实时计算框架该如何技术选型? 本文主要针对初学者,如果有不明白的概念可了解之前的博客内容. 1.什么是Spark Streaming? 与其他大数据框架Storm.Flink一样,Spark Streaming是基于Spark Core基础之上用于处理实时计算业务的框架.其实