POJ1459Power Network(dinic模板)

Power Network

Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 25832   Accepted: 13481

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
         (0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

主要是学习dinic算法

http://m.blog.csdn.net/blog/u012961561/38407763

  1 #include <iostream>
  2 #include <cstring>
  3 #include <algorithm>
  4 #include <cstdio>
  5 #include <stdio.h>
  6 #include <queue>
  7 #include <vector>
  8 using namespace std;
  9 const int MAX = 110;
 10 const int INF = 0x3f3f3f3f;
 11 struct Edge
 12 {
 13     int to,cap;
 14     Edge(int v,int w):to(v),cap(w) {}
 15 };
 16 int n,m,np,nc,s,t;
 17 vector<int> g[MAX];
 18 vector<Edge> edge;
 19 int d[MAX],cur[MAX];
 20 void AddEdge(int from,int to,int cap)
 21 {
 22     edge.push_back(Edge(to,cap));
 23     edge.push_back(Edge(from,0));
 24     int id = edge.size();
 25     g[from].push_back(id - 2);
 26     g[to].push_back(id - 1);
 27
 28 }
 29 bool bfs()
 30 {
 31     memset(d,0,sizeof(d));
 32     queue<int> q;
 33     q.push(s);
 34     d[s] = 1;
 35     while(!q.empty())
 36     {
 37         int x = q.front();
 38         q.pop();
 39         if(x == t)
 40             return true;
 41         int len = g[x].size();
 42         for(int i = 0; i < len; i++)
 43         {
 44             Edge e = edge[ g[x][i] ];
 45             if(d[e.to] == 0 && e.cap > 0)
 46             {
 47                 d[e.to] = d[x] + 1;
 48                 q.push(e.to);
 49             }
 50         }
 51     }
 52     return false;
 53 }
 54 int dfs(int x, int a)
 55 {
 56     if(x == t || a == 0)
 57         return a;
 58     int flow = 0,f;
 59     for(int& i = cur[x]; i < (int) g[x].size(); i++)
 60     {
 61          Edge& e = edge[ g[x][i] ];       //这里要是引用
 62          if(d[x] + 1 == d[e.to] && (f = dfs(e.to,min(a,e.cap))) > 0)
 63          {
 64              e.cap -= f;
 65              edge[ g[x][i] ^ 1].cap += f;
 66              flow += f;
 67              a -= f;
 68              if(a == 0)
 69              {
 70                  break;
 71              }
 72          }
 73     }
 74     return flow;
 75 }
 76 int MaxFlow()
 77 {
 78     int flow = 0;
 79     while(bfs())
 80     {
 81         memset(cur,0,sizeof(cur));
 82         flow += dfs(s,INF);
 83     }
 84     return flow;
 85 }
 86 int main()
 87 {
 88     char str[20];
 89     int u,v,w;
 90     while(scanf("%d%d%d%d",&n,&np,&nc,&m) != EOF)
 91     {
 92         s = n + 1;
 93         t = n + 2;
 94         for(int i = 0; i < n + 2; i++)
 95             g[i].clear();
 96         edge.clear();
 97         for(int i = 1; i <= m; i++)
 98         {
 99             scanf("%s",str);
100             sscanf(str,"%*c%d%*c%d%*c%d",&u,&v,&w);
101             AddEdge(u,v,w);
102         }
103         for(int i = 0; i < np; i++)
104         {
105             scanf("%s",str);
106             sscanf(str,"%*c%d%*c%d",&u,&w);
107             AddEdge(s,u,w);
108         }
109         for(int i = 0; i < nc; i++)
110         {
111             scanf("%s",str);
112             sscanf(str,"%*c%d%*c%d",&u,&w);
113             AddEdge(u,t,w);
114         }
115         printf("%d\n",MaxFlow());
116     }
117
118     return 0;
119 }

时间: 2024-10-06 18:39:57

POJ1459Power Network(dinic模板)的相关文章

POJ 1273 Drainage Ditches (网络流Dinic模板)

Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage

[POJ 1273] Drainage Ditches &amp; 最大流Dinic模板

Drainage Ditches Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a

USACO草地排水-网络流dinic模板

广搜计算层次图,在层次图上深搜.标准dinic模板. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 #include<vector> 5 #include<queue> 6 #include<cmath> 7 #include<algorithm> 8 #include<string.h> 9 #define INF 0x7fffff

洛谷P3376【模板】网络最大流  Dinic模板

之前的Dinic模板照着刘汝佳写的vector然后十分鬼畜跑得奇慢无比,虽然别人这样写也没慢多少但是自己的就是令人捉急. 改成邻接表之后快了三倍,虽然还是比较慢但是自己比较满意了.虽然一开始ecnt从0开始WA了一发... 之前的码风也十分鬼畜呀缩进只缩1.2格不懂自己怎么想的.. 反正今天就安心划划水. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #in

POJ 1273 Drainage Ditches (dinic模板)

题目链接:http://poj.org/problem?id=1273 很经典的最大流问题,用此总结dinic模板 dinic比E-K多了个DFS,只要明白什么是把图分层了,就不难理解了.BFS找增广路的同时把图分层,相当于记录了多条增广路,可以让每次dinic能处理尽量多的增广路. 模板: #include <iostream> #include <cstdio> #include <cstring> #include <queue> #include &

网络流--最大流dinic模板

标准的大白书式模板,除了变量名并不一样……在主函数中只需要用到 init 函数.add 函数以及 mf 函数 1 #include<stdio.h> //差不多要加这么些头文件 2 #include<string.h> 3 #include<queue> 4 #include<vector> 5 #include<algorithm> 6 using namespace std; 7 const int maxm=150+5; //点的总数 8

【网络流#3】hdu 1532 - Dinic模板题

输入为m,n表示m条边,n个结点 记下来m行,每行三个数,x,y,c表示x到y的边流量最大为c 这道题的模板来自于网络 http://blog.csdn.net/sprintfwater/article/details/7913061 建议大家去这个页面看看,博主也很良心地添加了很多注释 关于这个模板:Edge为前向星的边数,所以需要初始化Edge和head数组 n表示有n个点,这个版无所谓点从0开始还是从1开始,s表示源点,t表示汇点很好的一个是,这个版的DFS使用的是模拟栈,防止爆栈 1 #

最大流的理解以及dinic模板 poj1273

增广路以及残留网络的定义不再赘述了.算导上说的很清楚,证明也有,看懂了就知道怎么求最大流了. 而算导上提到的FF方法以及ek算法的伪代码中都是将流与残留容量分开储存,其实代码实现的时候我们只需存正反向弧的残留容量即可. 然后是对残留网络的一些理解,残留网络中的反向弧是怎么来的? 残留网络的每条边都是这条有向边的残留容量,而残留容量又由公式cf(u,v)=c(u,v)-f(u,v)得到,那么对于一条不存在的有向边(v,u),其容量c(v,u)=0,f(v,u)=-f(u,v)通过反对称性可知,那么

poj1459Power Network

Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 24159   Accepted: 12596 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount