JAVA线程池原理详解(1)

线程池的优点

1、线程是稀缺资源,使用线程池可以减少创建和销毁线程的次数,每个工作线程都可以重复使用。

2、可以根据系统的承受能力,调整线程池中工作线程的数量,防止因为消耗过多内存导致服务器崩溃。

线程池的创建

public ThreadPoolExecutor(   int corePoolSize,   int maximumPoolSize,   long keepAliveTime,   TimeUnit unit,   BlockingQueue<Runnable> workQueue,   RejectedExecutionHandler handler)
  • corePoolSize:线程池核心线程数量
  • maximumPoolSize:线程池最大线程数量
  • keepAliverTime:当活跃线程数大于核心线程数时,空闲的多余线程最大存活时间
  • unit:存活时间的单位
  • workQueue:存放任务的队列
  • handler:超出线程范围和队列容量的任务的处理程序

线程池的实现原理

提交一个任务到线程池中,线程池的处理流程如下:

1、判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。如果核心线程都在执行任务,则进入下个流程。

2、线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。

3、判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。

线程池的源码解读

1、ThreadPoolExecutor的execute()方法

public void execute(Runnable command) {    if (command == null)       throw new NullPointerException();   //如果线程数大于等于基本线程数或者线程创建失败,将任务加入队列    if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {    //线程池处于运行状态并且加入队列成功       if (runState == RUNNING && workQueue.offer(command)) {          if (runState != RUNNING || poolSize == 0)             ensureQueuedTaskHandled(command);          }      //线程池不处于运行状态或者加入队列失败,则创建线程(创建的是非核心线程)       else if (!addIfUnderMaximumPoolSize(command))        //创建线程失败,则采取阻塞处理的方式         reject(command); // is shutdown or saturated      } }

2、创建线程的方法:addIfUnderCorePoolSize(command)

private boolean addIfUnderCorePoolSize(Runnable firstTask) {    Thread t = null;    final ReentrantLock mainLock = this.mainLock;    mainLock.lock();    try {        if (poolSize < corePoolSize && runState == RUNNING)           t = addThread(firstTask);    } finally {        mainLock.unlock();    }    if (t == null)       return false;    t.start();    return true;}

我们重点来看第7行:

private Thread addThread(Runnable firstTask) {     Worker w = new Worker(firstTask);     Thread t = threadFactory.newThread(w);     if (t != null) {        w.thread = t;        workers.add(w);        int nt = ++poolSize;        if (nt > largestPoolSize)           largestPoolSize = nt;      }     return t;}

这里将线程封装成工作线程worker,并放入工作线程组里,worker类的方法run方法:

public void run() {    try {       Runnable task = firstTask;       firstTask = null;       while (task != null || (task = getTask()) != null) {           runTask(task);            task = null;        }     } finally {        workerDone(this);     }}

worker在执行完任务后,还会通过getTask方法循环获取工作队里里的任务来执行。

我们通过一个程序来观察线程池的工作原理:

1、创建一个线程

public class ThreadPoolTest implements Runnable{   @Override   public void run()   {       try       {           Thread.sleep(300);       }       catch (InterruptedException e)       {           e.printStackTrace();       }   }}

2、线程池循环运行16个线程:

public static void main(String[] args)   {       LinkedBlockingQueue<Runnable> queue =           new LinkedBlockingQueue<Runnable>(5);       ThreadPoolExecutor threadPool = new ThreadPoolExecutor(5, 10, 60, TimeUnit.SECONDS, queue);       for (int i = 0; i < 16 ; i++)       {           threadPool.execute(               new Thread(new ThreadPoolTest(), "Thread".concat(i + "")));           System.out.println("线程池中活跃的线程数: " + threadPool.getPoolSize());           if (queue.size() > 0)           {               System.out.println("----------------队列中阻塞的线程数" + queue.size());           }       }       threadPool.shutdown();   }

执行结果:

线程池中活跃的线程数: 1线程池中活跃的线程数: 2线程池中活跃的线程数: 3线程池中活跃的线程数: 4线程池中活跃的线程数: 5线程池中活跃的线程数: 5----------------队列中阻塞的线程数1线程池中活跃的线程数: 5----------------队列中阻塞的线程数2线程池中活跃的线程数: 5----------------队列中阻塞的线程数3线程池中活跃的线程数: 5----------------队列中阻塞的线程数4线程池中活跃的线程数: 5----------------队列中阻塞的线程数5线程池中活跃的线程数: 6----------------队列中阻塞的线程数5线程池中活跃的线程数: 7----------------队列中阻塞的线程数5线程池中活跃的线程数: 8----------------队列中阻塞的线程数5线程池中活跃的线程数: 9----------------队列中阻塞的线程数5线程池中活跃的线程数: 10----------------队列中阻塞的线程数5Exception in thread "main" java.util.concurrent.RejectedExecutionException: Task Thread[Thread15,5,main] rejected from [email protected][Running, pool size = 10, active threads = 10, queued tasks = 5, completed tasks = 0]   at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2047)   at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:823)   at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1369)   at test.ThreadTest.main(ThreadTest.java:17)

从结果可以观察出:

  1. 创建的线程池具体配置为:核心线程数量为5个;全部线程数量为10个;工作队列的长度为5。
  2. 我们通过queue.size()的方法来获取工作队列中的任务数。
  3. 运行原理:

        刚开始都是在创建新的线程,达到核心线程数量5个后,新的任务进来后不再创建新的线程,而是将任务加入工作队列,任务队列到达上线5个后,新的任务又会创建新的普通线程,直到达到线程池最大的线程数量10个,后面的任务则根据配置的饱和策略来处理。我们这里没有具体配置,使用的是默认的配置AbortPolicy:直接抛出异常。

当然,为了达到我需要的效果,上述线程处理的任务都是利用休眠导致线程没有释放!!

 

RejectedExecutionHandler:饱和策略

当队列和线程池都满了,说明线程池处于饱和状态,那么必须对新提交的任务采用一种特殊的策略来进行处理。这个策略默认配置是AbortPolicy,表示无法处理新的任务而抛出异常。JAVA提供了4中策略:

  • AbortPolicy:直接抛出异常
  • CallerRunsPolicy:只用调用所在的线程运行任务
  • DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
  • DiscardPolicy:不处理,丢弃掉。

我们现在用第四种策略来处理上面的程序:

public static void main(String[] args)   {       LinkedBlockingQueue<Runnable> queue =           new LinkedBlockingQueue<Runnable>(3);       RejectedExecutionHandler handler = new ThreadPoolExecutor.DiscardPolicy();

       ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 5, 60, TimeUnit.SECONDS, queue,handler);       for (int i = 0; i < 9 ; i++)       {           threadPool.execute(               new Thread(new ThreadPoolTest(), "Thread".concat(i + "")));           System.out.println("线程池中活跃的线程数: " + threadPool.getPoolSize());           if (queue.size() > 0)           {               System.out.println("----------------队列中阻塞的线程数" + queue.size());           }       }       threadPool.shutdown();   }

执行结果

线程池中活跃的线程数: 1线程池中活跃的线程数: 2线程池中活跃的线程数: 2----------------队列中阻塞的线程数1线程池中活跃的线程数: 2----------------队列中阻塞的线程数2线程池中活跃的线程数: 2----------------队列中阻塞的线程数3线程池中活跃的线程数: 3----------------队列中阻塞的线程数3线程池中活跃的线程数: 4----------------队列中阻塞的线程数3线程池中活跃的线程数: 5----------------队列中阻塞的线程数3线程池中活跃的线程数: 5----------------队列中阻塞的线程数3

这里采用了丢弃策略后,就没有再抛出异常,而是直接丢弃。在某些重要的场景下,可以采用记录日志或者存储到数据库中,而不应该直接丢弃。

设置策略有两种方式:

第一种:

RejectedExecutionHandler handler = new ThreadPoolExecutor.DiscardPolicy();ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 5, 60, TimeUnit.SECONDS, queue,handler);

第二种:

ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 5, 60, TimeUnit.SECONDS, queue);threadPool.setRejectedExecutionHandler(new ThreadPoolExecut

原文地址:https://www.cnblogs.com/peke/p/8708693.html

时间: 2024-10-10 01:09:29

JAVA线程池原理详解(1)的相关文章

JAVA线程池原理详解一

线程池的优点 1.线程是稀缺资源,使用线程池可以减少创建和销毁线程的次数,每个工作线程都可以重复使用. 2.可以根据系统的承受能力,调整线程池中工作线程的数量,防止因为消耗过多内存导致服务器崩溃. 线程池的创建 1 public ThreadPoolExecutor(int corePoolSize, 2 int maximumPoolSize, 3 long keepAliveTime, 4 TimeUnit unit, 5 BlockingQueue<Runnable> workQueue

Executor线程池原理详解

线程池 线程池的目的就是减少多线程创建的开销,减少资源的消耗,让系统更加的稳定.在web开发中,服务器会为了一个请求分配一个线程来处理,如果每次请求都创建一个线程,请求结束就销毁这个线程.那么在高并发的情况下,就会有大量线程创建和销毁,这就会降低系统的效率.线程池的诞生就是为了让线程得到重复使用,减少了线程创建和销毁的开销,减少了线程的创建和销毁自然的就提高了系统的响应速度,与此同时还提高了线程的管理性,使线程可以得到统一的分配,监控和调优. 线程创建和销毁为什么会有开销呢,因为我们java运行

Java虚拟机工作原理详解

原文地址:http://blog.csdn.net/bingduanlbd/article/details/8363734 一.类加载器 首先来看一下java程序的执行过程. 从这个框图很容易大体上了解java程序工作原理.首先,你写好java代码,保存到硬盘当中.然后你在命令行中输入 [java] view plaincopy javac YourClassName.java 此时,你的java代码就被编译成字节码(.class).如果你是在Eclipse IDE或者其他开发工具中,你保存代码

Java线程join示例详解

Java线程的join方法可用于暂停当前线程的执行直至目标线程死亡.Thread中一共有三个join的重载方法. public final void join():该方法将当前线程放入等待队列中,直至被它调用的线程死亡为止.如果该线程被中断,则会抛出InterruptedException异常. public final synchronized void join(long millis):该方法用于让当前线程进入等待状态,直至被它调用的线程死亡或是经过millis毫秒.由于线程的执行依赖于操

Java ExecutorService四种线程池使用详解

1.引言 合理利用线程池能够带来三个好处.第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗.第二:提高响应速度.当任务到达时,任务可以不需要的等到线程创建就能立即执行.第三:提高线程的可管理性.线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控.但是要做到合理的利用线程池,必须对其原理了如指掌. 2.线程池使用 Executors提供的四种线程 1.newCachedThreadPool创建一个可缓存线程池

Java轻量级锁原理详解(Lightweight Locking)

大家知道,Java的多线程安全是基于Lock机制实现的,而Lock的性能往往不如人意. 原因是,monitorenter与monitorexit这两个控制多线程同步的bytecode原语,是JVM依赖操作系统互斥(mutex)来实现的. 互斥是一种会导致线程挂起,并在较短的时间内又需要重新调度回原线程的,较为消耗资源的操作. 为了优化Java的Lock机制,从Java6开始引入了轻量级锁的概念. 轻量级锁(Lightweight Locking)本意是为了减少多线程进入互斥的几率,并不是要替代互

Java线程池原理

转自:https://www.jianshu.com/p/a166944f1e73 本篇文章主要介绍Java线程池的原理以及源码的分析 线程池的介绍 Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池. 线程池的优点 第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗. 第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行. 第三:提高线程的可管理性.线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会

含源码解析,深入Java 线程池原理

从池化技术到底层实现,一篇文章带你贯通线程池技术. 1.池化技术简介 在系统开发过程中,我们经常会用到池化技术来减少系统消耗,提升系统性能. 在编程领域,比较典型的池化技术有: 线程池.连接池.内存池.对象池等. 对象池通过复用对象来减少创建对象.垃圾回收的开销:连接池(数据库连接池.Redis连接池和HTTP连接池等)通过复用TCP连接来减少创建和释放连接的时间.线程池通过复用线程提升性能.简单来说,池化技术就是通过复用来提升性能. 线程.内存.数据库的连接对象都是资源,在程序中,当你创建一个

Java 线程池原理分析

1.简介 线程池可以简单看做是一组线程的集合,通过使用线程池,我们可以方便的复用线程,避免了频繁创建和销毁线程所带来的开销.在应用上,线程池可应用在后端相关服务中.比如 Web 服务器,数据库服务器等.以 Web 服务器为例,假如 Web 服务器会收到大量短时的 HTTP 请求,如果此时我们简单的为每个 HTTP 请求创建一个处理线程,那么服务器的资源将会很快被耗尽.当然我们也可以自己去管理并复用已创建的线程,以限制资源的消耗量,但这样会使用程序的逻辑变复杂.好在,幸运的是,我们不必那样做.在