腾讯技术工程 |腾讯AI Lab刷新人脸识别与检测两大测评国际记录,技术日调用超六亿

2017年12月18日,深圳 - 腾讯AI Lab研发的Face R-FCN和FaceCNN算法分别在国际最大、最难的人脸检测平台WIDER FACE与最热门权威的人脸识别平台MegaFace多项评测指标中荣膺榜首,刷新行业纪录,展现其在计算机视觉领域中,特别是人脸技术上的强劲实力。

研究上,目前腾讯AI Lab已通过arXiv平台发表论文公开人脸检测算法部分技术细节,促进企业与学界“共享AI”研究成果;应用上,该人脸技术已接入腾讯互联网+公共服务平台等多个应用场景,每日技术调用量超六亿次,未来有望更广泛应用到政务、金融、安防等多个领域,营造安全网络环境,方便百姓远程办事。

人脸检测是让机器找到图像视频中所有人脸并精准定位其位置信息,人脸识别是基于人脸图像自动辨识其身份,两者密切相关,前者是后者的前提和基础。在研究上,由于视角、光照、遮挡、姿态、年龄变化等复杂因素的干扰与影响,真实场景下的人脸检测与识别问题一直是极具研究价值与挑战性的国际性难题。而在应用上,其在政务、金融、安防等领域都具有极高价值。在人脸技术发展过程中,标准评测数据集的重要性不言而喻。参与标准数据集测试时,研究人员可在固定标准下,评估算法性能,并以此为方向推动技术不断发展。

人脸检测算法FaceR-FCN在WIDER FACE全部测试和FDDB测试斩获第一

在人脸检测领域,WIDERFACE是目前国际最大、最具挑战性的人脸检测评测平台,由香港中文大学发布维护,共有3.2万张图像,39万个标注的人脸,这些人脸在尺寸、姿态、角度和遮挡等有很大变化,吸引了中科院、美国卡耐基梅隆大学和马里兰大学等知名机构参与测评。

WIDER FACE 人脸图像示例,绿框为腾讯AI Lab算法检测结果,红框为官方标注结果

腾讯AI Lab针对人脸在尺度、光线、角度和遮挡上的多维变化,有效改进深度全卷积神经网络,提升人脸检测精度和鲁棒性,推出人脸检测算法Face R-FCN。该算法在WIDER FACE测试平台中使用官方指定训练集,即在完全公平竞争情况下评测不同参赛算法的性能时,在简单、中等及困难模式(Easy、Medium、Hard)的全部三个测试子集中均取得世界第一。目前该算法部分技术细节已在arXiv论文平台上公布。(论文地址:https://arxiv.org/abs/1709.05256

WIDERFACE 评测结果曲线,第一行是验证集的结果,第二行是测试集的结果http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/WiderFace_Results.html

人脸识别算法FaceCNN在MegaFace Challenge 2所有测试斩获第一

在人脸识别领域,MegaFace是目前最权威热门的人脸识别评测平台之一,由美国华盛顿大学(University of Washington)发布维护,在百万规模人脸数据下,评定1:N辨识(Face Identification)和1:1验证(Face Verification)两大指标准确率。1:N辨识是在N个人数据库中找到1个目标人脸,1:1验证是判断给定的两张人脸是否属于同一身份。基于评测数据规模和评测指标上的优势,MegaFace吸引了Google、俄罗斯著名安防公司Vocord、日本NEC和美国卡耐基梅隆大学等知名机构参与。

MegaFace常规人脸数据样例

MegaFace跨年龄人脸数据样例。这些照片是同一个人在不同年龄时所拍照片

腾讯AI Lab针对常规人脸识别和跨年龄人脸识别,在网络模型结构、特征学习等方面进行创新性改进,推出了人脸识别算法Face CNN。该算法在MegaFace测试平台中使用官方指定训练数据,即在完全公平竞争情况下评测不同参赛算法的性能时,在MegaFace Challenge 2(简称为MF2)的所有测试任务均取得世界第一。Face CNN算法相关技术解读也将在未来陆续公布。

MegaFace含两个Challenge,Challenge 1(MF1)可使用任何外部不限量的人脸数据来训练参赛算法,如谷歌使用亿级数据,其他团队采用百万级数据,较难公平比较算法性能。而Mega Face推出的新版Challenge 2(MF2)要求使用官方固定训练集,能更客观对比各算法的情况。MF2分为常规识别和跨年龄识别两个子任务,分别使用FaceScrub和FGNET测试集,将1:N辨识和1:1验证的准确率视为两项关键评测指标。MF2详细评测结果参阅:http://megaface.cs.washington.edu/results/facescrub_challenge2.html

表1. MF2常规识别任务的辨识准确率(1:N)排名

表2. MF2的常规识别任务的验证准确率(1:1)排名

表3. MF2的跨年龄识别任务的辨识准确率(1:N)排名

表4. MF2的跨年龄任务的验证准确率(1:1)排名

研究到应用迅速落地,推进“共享AI”发展之路

腾讯AI Lab的自研人脸技术已接入腾讯若干业务场景,每日技术调用量已超过6亿次。一个典型的应用场景是在互联网+公众服务领域,通过人脸验证完成身份自动鉴别的“刷脸办事”场景,方便百姓远程办事,让数据多跑路,百姓少跑腿,通过技术提升了公共服务的品质与效率。遵循与学界和行业“共享AI”成果的发展之路,腾讯AI Lab不断推进研究到应用迅速落地,缩短技术迭代时间,小步快跑构建腾讯的AI核心竞争力。

此外,在CVPR、ACL、ICML、NIPS和Nature子刊等衡量AI研究能力的顶级会议和期刊中,腾讯AI Lab今年被收录论文110多篇,位居国内企业前列,展现了较强的基础研究能力。在落地应用上,除了技术已经落到微信、QQ、新闻、音乐和视频平台,还围绕游戏、内容和社交等核心业务突破。在行业上,推出了围棋AI“绝艺”,并广泛支持AI+医疗产品“腾讯觅影”。

关于腾讯AI Lab

腾讯AI Lab于2016年4月成立,是腾讯的企业级人工智能实验室,专注于AI基础研究与落地应用的结合,借助腾讯丰富应用场景、海量大数据、强大计算能力和一流科技人才等发展优势,为腾讯打造全面的AI能力,向“Make AI Everywhere”(让AI无处不在)的愿景迈步。

腾讯AI Lab主任及第一负责人是机器学习和大数据专家张潼博士,副主任及西雅图AI Lab负责人是语音识别及深度学习专家俞栋博士。目前深圳和西雅图两个实验室共有70余位国际一流的AI科学家及300多位经验丰富的应用工程师。

腾讯AI Lab的基础研究专注机器学习、计算机视觉、语音识别和自然语言处理四大方向,技术应用聚焦于内容、游戏、社交和平台工具型AI四个方向,目前已落地到微信、QQ、天天快报和QQ音乐等上百个腾讯产品。在行业落地上,围棋AI“绝艺”及AI+医疗项目“腾讯觅影”等项目取得了突破性进展。



原文地址:http://blog.51cto.com/13591395/2067619

时间: 2024-10-23 03:29:13

腾讯技术工程 |腾讯AI Lab刷新人脸识别与检测两大测评国际记录,技术日调用超六亿的相关文章

AI时代,人脸识别的安全性怎么看?

最近,丰巢快递柜可用照片代替真人来刷脸进行取件.该漏洞被发现,并且丰巢客服回应称,该功能仅为测试使用,并未正式投入使用,并已采取措施进行下线,或等系统完善后再上线.其实,关于人脸识别出现漏洞的负面新闻并不是第一次了. 之前,在美国人脸识别发生的大失误是将很多国会议员判别为罪犯,导致在摄像头拍到议员的时候直接触发了警报.美国另一个城市,也发生了人脸识别漏洞,造成市民恐慌.这两个案例的发生造成美国多城市禁止人脸识别的使用.可见人脸识别技术一直不够成熟,也不够安全,还存在诸多问题,但是有必要需要禁止使

腾讯技术工程 | 腾讯AI Lab 现场陈述论文:使众包配对排名聚合信息最大化的 HodgeRan

前言:腾讯AI Lab共有12篇论文入选在美国新奥尔良举行的国际人工智能领域顶级学术会议AAAI 2018.腾讯技术工程官方号编译整理了现场陈述论文<使众包配对排名聚合信息最大化的 HodgeRank>(HodgeRank with Information Maximization for Crowdsourced Pairwise Ranking Aggregation),该论文被AAAI 2018录用为现场陈述报告(Oral Presentation),由中国科学院信息工程研究所.腾讯AI

腾讯技术工程 |腾讯公司副总裁姚星:每次浪潮前 腾讯都在革自己的命

<中国人工智能之路(一线人物第三季)>是由财新视频与澜亭资本联合出品的高端纪录访谈节目,是国内第一档聚焦被视为"人类第四次工业革命核心驱动力"的新一轮人工智能浪潮在中国发展历史.现状与未来趋势的主题性专业探讨节目. 从"政策与战略篇"."产业与机遇篇"."风险与挑战篇"."人才与教育篇"四大章节进行全方位探讨.审视与建议,亲临体验图像分析.语音识别.智慧出行.机器人服务.信息与内容平台.智能社交

腾讯技术工程 |腾讯海外计费系统架构演进

作者简介:abllen,2008年加入腾讯,一直专注于腾讯计费平台建设,主导参与了腾讯充值中心.计费开放平台.统一计费米大师等项目,见证了米大师从0到1,业务营收从PC到移动多终端再到全球化的跨越过程.20+篇支付专利主撰写人.目前专注于跟团队一起为腾讯业务提供稳定高效安全的全球化个人和企业市场计费服务. 经过海外3年建设,腾讯Midas(米大师)计费逐步构建起了一个分布式的全球计费系统,来助力公司及业内产品计费扬帆出海,走向深蓝.在刚过去的北京全球架构师峰会上,腾讯计费平台部架构师陈宁国分享了

跑赢阿里云和百度,腾讯云凭啥刷新大数据国际记录?

2016年11月10日,具有计算奥运会之称的Sort Benchmark全球排序竞赛公布结果,其中,腾讯云用98.8秒完成100TB的数据排序,打破阿里云去年创造的329秒记录,以及更早前百度的716秒纪录,这引起了业界的关注. 众所周知,腾讯云直到最近几年才开始发力公有云和大数据业务,而阿里云早从2009年开始就已经大张旗鼓的发展云计算业务,进入2016年全力推进大数据业务.那么,腾讯云在2016年底刷新大数据国际比赛的纪录,是偶然事件还是确有过人之处?记者就此采访了腾讯云副总裁.腾讯数据平台

AI(二):人脸识别

微软提供的人脸识别服务可检测图片中一个或者多个人脸,并为人脸标记出边框,同时还可获得基于机器学习技术做出的面部特征预测.可支持的人脸功能有:年龄.性别.头部姿态.微笑检测.胡须检测以及27个面部重要特征点位置等.FaceAPI 提供两个主要功能: 人脸检测和识别 目录: 申请subscription key 示例效果 开发示例 AForge.Net 申请订阅号 申请试用subscription key, 地址 https://www.microsoft.com/cognitive-service

人脸识别活体检测技术讨论:基于背景人脸相对运动的活体判断方法

活体检测是人脸识别安全性的重要保障,是人脸识别厂商将产品普及应用于各行业的重要竞争力.目前活体判断的方法很多,但很难基于一种方法就能达到理想的效果,往往需要多种算法的交叉判断,本文主要介绍一种简单有效的活体判断方法.在很多情况下,高清照片和真人在某些光线条件下在相机中的成像很接近,这就导致仅仅基于面部的特征很难准确判断活体.在大部分场景下,人手拿着照片,手机或者pad不会完全静止不动,而在有运动时,真人和照片的区别很大:真实人脸运动与背景无相关性,照片,手机或者Pad在运动时,人脸运动与周围背景

c# 利用AForge和百度AI开发实时人脸识别

baiduAIFaceIdentify项目是C#语言,集成百度AI的SDK利用AForge开发的实时人脸识别的小demo,里边包含了人脸检测识别,人脸注册,人脸登录等功能 人脸实时检测识别功能 思路是利用AForge打开摄像头,通过摄像头获取到的图像显示在winform窗体中AForge的控件中,利用AForge控件中的NewFrame事件获取要显示的每一帧的图像,获取图像传输到百度AI平台进行人脸检测,并且将检测结果反馈到界面显示的图像中.在这个过程中有两个问题,获取图像上传到百度AI平台进行

腾讯技术工程 |腾讯报告TensorFlow首个安全风险 谷歌确认并致谢

日前,腾讯发现谷歌人工智能学习系统TensorFlow存在严重安全风险,可被黑客利用带来安全威胁.据悉,该风险是TensorFlow首个自身安全风险,腾讯安全平台部预研团队已向谷歌报告这一风险并获得致谢. 腾讯安全平台部预研团队发现,攻击者可以生成Tensorflow的恶意模型文件,对AI研究者进行攻击,对受害者自身的AI应用进行窃取或篡改.破坏.该风险危害面非常大,一方面攻击成本低,普通攻击者即可实施攻击:另一方面迷惑性强,大部分AI研究者可能毫无防备:同时因为利用了TensorFlow自身的