题目
题目描述
Farmer John has decided to bring water to his N (1 <= N <= 300) pastures which are conveniently numbered 1..N. He may bring water to a pasture either by building a well in that pasture or connecting the pasture via a pipe to another pasture which already has water.
Digging a well in pasture i costs W_i (1 <= W_i <= 100,000).
Connecting pastures i and j with a pipe costs P_ij (1 <= P_ij <= 100,000; P_ij = P_ji; P_ii=0).
Determine the minimum amount Farmer John will have to pay to water all of his pastures.
POINTS: 400
农民John 决定将水引入到他的n(1<=n<=300)个牧场。他准备通过挖若
干井,并在各块田中修筑水道来连通各块田地以供水。在第i 号田中挖一口井需要花费W_i(1<=W_i<=100,000)元。连接i 号田与j 号田需要P_ij (1 <= P_ij <= 100,000 , P_ji=P_ij)元。
请求出农民John 需要为连通整个牧场的每一块田地所需要的钱数。
输入输出格式
输入格式:
第1 行为一个整数n。
第2 到n+1 行每行一个整数,从上到下分别为W_1 到W_n。
第n+2 到2n+1 行为一个矩阵,表示需要的经费(P_ij)。
输出格式:
只有一行,为一个整数,表示所需要的钱数。
输入输出样例
输入样例#1:
4 5 4 4 3 0 2 2 2 2 0 3 3 2 3 0 4 2 3 4 0
输出样例#1:
9
分析
要将图中的所有点连接起来,求最小的花费,这是一道典型的最小生成树。但是这道最小生成树的最大难点在于本题多了一个“井”的问题。同时挖井也有一定的花费。如何处理这个井就是我们接下来要考虑的问题。
其实我们有一个非常“投机取巧”的方法。我们把Farmer John牌地下天然矿泉水源也考虑作一个点。这个地下水源到其他点路径的权值就是挖井的费用。然后就是一个没有什么特殊操作的裸Prim了!
(最喜欢这种在模板上稍加改动的题目了)
程序
1 #include <bits/stdc++.h> 2 using namespace std; 3 const int MAXN = 300 + 1, INF = 0x3F3F3F3F; 4 int n, w, p, EdgeCount= 0, Head[MAXN]; 5 struct edge 6 { 7 int Next, Aim, Weight; 8 }Edge[MAXN*MAXN]; 9 void insert(int u, int v, int w) 10 { 11 Edge[++EdgeCount] = (edge){Head[u], v, w}; 12 Head[u] = EdgeCount; 13 } 14 int Prim() 15 { 16 bool vis[MAXN]; 17 int MinLen, Count = 1, ans = 0, visited[MAXN]; 18 visited[Count] = 0; 19 vis[0] = 1; 20 for (int i = 1; i <= n; i++) 21 { 22 MinLen = INF; 23 for (int j = 1; j <= Count; j++) 24 for (int k = Head[visited[j]]; k; k = Edge[k].Next) 25 if (!vis[Edge[k].Aim] && Edge[k].Weight < MinLen) 26 { 27 MinLen = Edge[k].Weight; 28 p = Edge[k].Aim; 29 } 30 vis[p] = 1; 31 ans += MinLen; 32 Count++; 33 visited[Count] = p; 34 } 35 return ans; 36 } 37 int main() 38 { 39 //freopen("testdata.in","r",stdin); 40 //freopen("data.out","w",stdout); 41 memset(Head,0,sizeof(Head)); 42 cin >> n; 43 for (int i = 1; i <= n; i++) 44 { 45 cin >> w; 46 insert(0,i,w); 47 insert(i,0,w); 48 } 49 for (int i = 1; i <= n ; i++) 50 for (int j = 1; j <= n; j++) 51 { 52 cin >> p; 53 if (i != j) 54 insert(i,j,p); 55 } 56 cout << Prim() << endl; 57 return 0; 58 }
原文地址:https://www.cnblogs.com/OIerPrime/p/8425730.html