Linux内核中双向链表的经典实现

Linux内核中双向链表的经典实现

概要

前面一章"介绍双向链表并给出了C/C++/Java三种实现",本章继续对双向链表进行探讨,介绍的内容是Linux内核中双向链表的经典实现和用法。其中,也会涉及到Linux内核中非常常用的两个经典宏定义offsetof和container_of。内容包括:
1. Linux中的两个经典宏定义
2. Linux中双向链表的经典实现

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3562146.html



更多内容: 数据结构与算法系列 目录

Linux中的两个经典宏定义

倘若你查看过Linux Kernel的源码,那么你对 offsetof 和 container_of 这两个宏应该不陌生。这两个宏最初是极客写出的,后来在Linux内核中被推广使用。

1. offsetof

1.1 offsetof介绍

定义:offsetof在linux内核的include/linux/stddef.h中定义。

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

说明:获得结构体(TYPE)的变量成员(MEMBER)在此结构体中的偏移量。
(01)  ( (TYPE *)0 )   将零转型为TYPE类型指针,即TYPE类型的指针的地址是0。
(02)  ((TYPE *)0)->MEMBER     访问结构中的数据成员。
(03)  &( ( (TYPE *)0 )->MEMBER )     取出数据成员的地址。由于TYPE的地址是0,这里获取到的地址就是相对MEMBER在TYPE中的偏移。
(04)  (size_t)(&(((TYPE*)0)->MEMBER))     结果转换类型。对于32位系统而言,size_t是unsigned int类型;对于64位系统而言,size_t是unsigned long类型。

1.2 offsetof示例
代码(offset_test.c)

 1 #include <stdio.h>
 2
 3 // 获得结构体(TYPE)的变量成员(MEMBER)在此结构体中的偏移量。
 4 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
 5
 6 struct student
 7 {
 8     char gender;
 9     int id;
10     int age;
11     char name[20];
12 };
13
14 void main()
15 {
16     int gender_offset, id_offset, age_offset, name_offset;
17
18     gender_offset = offsetof(struct student, gender);
19     id_offset = offsetof(struct student, id);
20     age_offset = offsetof(struct student, age);
21     name_offset = offsetof(struct student, name);
22
23     printf("gender_offset = %d\n", gender_offset);
24     printf("id_offset = %d\n", id_offset);
25     printf("age_offset = %d\n", age_offset);
26     printf("name_offset = %d\n", name_offset);
27 }

结果

gender_offset = 0
id_offset = 4
age_offset = 8
name_offset = 12

说明:简单说说"为什么id的偏移值是4,而不是1"。我的运行环境是linux系统,32位的x86架构。这就意味着cpu的数据总线宽度为32,每次能够读取4字节数据。gcc对代码进行处理的时候,是按照4字节对齐的。所以,即使gender是char(一个字节)类型,但是它仍然是4字节对齐的!

1.3 offsetof图解

TYPE是结构体,它代表"整体";而MEMBER是成员,它是整体中的某一部分。
将offsetof看作一个数学问题来看待,问题就相当简单了:已知‘整体‘和该整体中‘某一个部分‘,而计算该部分在整体中的偏移。

2. container_of

2.1 container_of介绍

定义:container_of在linux内核的include/linux/kernel.h中定义。

#define container_of(ptr, type, member) ({              const typeof( ((type *)0)->member ) *__mptr = (ptr);        (type *)( (char *)__mptr - offsetof(type,member) );})

说明:根据"结构体(type)变量"中的"域成员变量(member)的指针(ptr)"来获取指向整个结构体变量的指针。
(01) typeof( ( (type *)0)->member )     取出member成员的变量类型。
(02)
const typeof( ((type *)0)->member ) *__mptr = (ptr)  
 定义变量__mptr指针,并将ptr赋值给__mptr。经过这一步,__mptr为member数据类型的常量指针,其指向ptr所指向的地址。
(04) (char *)__mptr    将__mptr转换为字节型指针。
(05) offsetof(type,member))    就是获取"member成员"在"结构体type"中的位置偏移。
(06) (char *)__mptr - offsetof(type,member))    就是用来获取"结构体type"的指针的起始地址(为char *型指针)。
(07) (type *)( (char *)__mptr - offsetof(type,member) )    就是将"char *类型的结构体type的指针"转换为"type *类型的结构体type的指针"。

2.2 container_of示例

代码(container_test.c)

 1 #include <stdio.h>
 2 #include <string.h>
 3
 4 // 获得结构体(TYPE)的变量成员(MEMBER)在此结构体中的偏移量。
 5 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
 6
 7 // 根据"结构体(type)变量"中的"域成员变量(member)的指针(ptr)"来获取指向整个结构体变量的指针
 8 #define container_of(ptr, type, member) ({           9     const typeof( ((type *)0)->member ) *__mptr = (ptr);    10     (type *)( (char *)__mptr - offsetof(type,member) );})
11
12 struct student
13 {
14     char gender;
15     int id;
16     int age;
17     char name[20];
18 };
19
20 void main()
21 {
22     struct student stu;
23     struct student *pstu;
24
25     stu.gender = ‘1‘;
26     stu.id = 9527;
27     stu.age = 24;
28     strcpy(stu.name, "zhouxingxing");
29
30     // 根据"id地址" 获取 "结构体的地址"。
31     pstu = container_of(&stu.id, struct student, id);
32
33     // 根据获取到的结构体student的地址,访问其它成员
34     printf("gender= %c\n", pstu->gender);
35     printf("age= %d\n", pstu->age);
36     printf("name= %s\n", pstu->name);
37 }

结果

gender= 1
age= 24
name= zhouxingxing

2.3 container_of图解

type是结构体,它代表"整体";而member是成员,它是整体中的某一部分,而且member的地址是已知的。
将offsetof看作一个数学问题来看待,问题就相当简单了:已知‘整体‘和该整体中‘某一个部分‘,要根据该部分的地址,计算出整体的地址。

Linux中双向链表的经典实现

1. Linux中双向链表介绍

Linux双向链表的定义主要涉及到两个文件:
include/linux/types.h
include/linux/list.h

Linux中双向链表的使用思想
它是将双向链表节点嵌套在其它的结构体中;在遍历链表的时候,根据双链表节点的指针获取"它所在结构体的指针",从而再获取数据。

我举个例子来说明,可能比较容易理解。假设存在一个社区中有很多人,每个人都有姓名和年龄。通过双向链表将人进行关联的模型图如下:

person代表人,它有name和age属性。为了通过双向链表对person进行链接,我们在person中添加了list_head属性。通过list_head,我们就将person关联起来了。

struct person
{
    int age;
    char name[20];
    struct list_head list;
};

2. Linux中双向链表的源码分析

(01). 节点定义

struct list_head {
    struct list_head *next, *prev;
};

虽然名称list_head,但是它既是双向链表的表头,也代表双向链表的节点。

(02). 初始化节点

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name)     struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list)
{
    list->next = list;
    list->prev = list;
}

LIST_HEAD的作用是定义表头(节点):新建双向链表表头name,并设置name的前继节点和后继节点都是指向name本身。
LIST_HEAD_INIT的作用是初始化节点:设置name节点的前继节点和后继节点都是指向name本身。
INIT_LIST_HEAD和LIST_HEAD_INIT一样,是初始化节点:将list节点的前继节点和后继节点都是指向list本身。

(03). 添加节点

static inline void __list_add(struct list_head *new,
                  struct list_head *prev,
                  struct list_head *next)
{
    next->prev = new;
    new->next = next;
    new->prev = prev;
    prev->next = new;
}

static inline void list_add(struct list_head *new, struct list_head *head)
{
    __list_add(new, head, head->next);
}

static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
    __list_add(new, head->prev, head);
}

__list_add(new, prev, next)的作用是添加节点:将new插入到prev和next之间。在linux中,以"__"开头的函数意味着是内核的内部接口,外部不应该调用该接口。
list_add(new, head)的作用是添加new节点:将new添加到head之后,是new称为head的后继节点。
list_add_tail(new, head)的作用是添加new节点:将new添加到head之前,即将new添加到双链表的末尾。

(04). 删除节点

static inline void __list_del(struct list_head * prev, struct list_head * next)
{
    next->prev = prev;
    prev->next = next;
}

static inline void list_del(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
}

static inline void __list_del_entry(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
}

static inline void list_del_init(struct list_head *entry)
{
    __list_del_entry(entry);
    INIT_LIST_HEAD(entry);
}

__list_del(prev, next) 和__list_del_entry(entry)都是linux内核的内部接口。
__list_del(prev, next) 的作用是从双链表中删除prev和next之间的节点。
__list_del_entry(entry) 的作用是从双链表中删除entry节点。

list_del(entry) 和 list_del_init(entry)是linux内核的对外接口。
list_del(entry) 的作用是从双链表中删除entry节点。
list_del_init(entry) 的作用是从双链表中删除entry节点,并将entry节点的前继节点和后继节点都指向entry本身。

(05). 替换节点

static inline void list_replace(struct list_head *old,
                struct list_head *new)
{
    new->next = old->next;
    new->next->prev = new;
    new->prev = old->prev;
    new->prev->next = new;
}

list_replace(old, new)的作用是用new节点替换old节点。

(06). 判断双链表是否为空

static inline int list_empty(const struct list_head *head)
{
    return head->next == head;
}

list_empty(head)的作用是判断双链表是否为空。它是通过区分"表头的后继节点"是不是"表头本身"来进行判断的。

(07). 获取节点

#define list_entry(ptr, type, member) \
    container_of(ptr, type, member)

list_entry(ptr, type, member) 实际上是调用的container_of宏。
它的作用是:根据"结构体(type)变量"中的"域成员变量(member)的指针(ptr)"来获取指向整个结构体变量的指针。

(08). 遍历节点

#define list_for_each(pos, head)     for (pos = (head)->next; pos != (head); pos = pos->next)

#define list_for_each_safe(pos, n, head)     for (pos = (head)->next, n = pos->next; pos != (head);         pos = n, n = pos->next)

list_for_each(pos, head)和list_for_each_safe(pos, n, head)的作用都是遍历链表。但是它们的用途不一样!
list_for_each(pos, head)通常用于获取节点,而不能用到删除节点的场景。
list_for_each_safe(pos, n, head)通常删除节点的场景。

3. Linux中双向链表的使用示例

双向链表代码(list.h)

  1 #ifndef _LIST_HEAD_H
  2 #define _LIST_HEAD_H
  3
  4 // 双向链表节点
  5 struct list_head {
  6     struct list_head *next, *prev;
  7 };
  8
  9 // 初始化节点:设置name节点的前继节点和后继节点都是指向name本身。
 10 #define LIST_HEAD_INIT(name) { &(name), &(name) }
 11
 12 // 定义表头(节点):新建双向链表表头name,并设置name的前继节点和后继节点都是指向name本身。
 13 #define LIST_HEAD(name)  14     struct list_head name = LIST_HEAD_INIT(name)
 15
 16 // 初始化节点:将list节点的前继节点和后继节点都是指向list本身。
 17 static inline void INIT_LIST_HEAD(struct list_head *list)
 18 {
 19     list->next = list;
 20     list->prev = list;
 21 }
 22
 23 // 添加节点:将new插入到prev和next之间。
 24 static inline void __list_add(struct list_head *new,
 25                   struct list_head *prev,
 26                   struct list_head *next)
 27 {
 28     next->prev = new;
 29     new->next = next;
 30     new->prev = prev;
 31     prev->next = new;
 32 }
 33
 34 // 添加new节点:将new添加到head之后,是new称为head的后继节点。
 35 static inline void list_add(struct list_head *new, struct list_head *head)
 36 {
 37     __list_add(new, head, head->next);
 38 }
 39
 40 // 添加new节点:将new添加到head之前,即将new添加到双链表的末尾。
 41 static inline void list_add_tail(struct list_head *new, struct list_head *head)
 42 {
 43     __list_add(new, head->prev, head);
 44 }
 45
 46 // 从双链表中删除entry节点。
 47 static inline void __list_del(struct list_head * prev, struct list_head * next)
 48 {
 49     next->prev = prev;
 50     prev->next = next;
 51 }
 52
 53 // 从双链表中删除entry节点。
 54 static inline void list_del(struct list_head *entry)
 55 {
 56     __list_del(entry->prev, entry->next);
 57 }
 58
 59 // 从双链表中删除entry节点。
 60 static inline void __list_del_entry(struct list_head *entry)
 61 {
 62     __list_del(entry->prev, entry->next);
 63 }
 64
 65 // 从双链表中删除entry节点,并将entry节点的前继节点和后继节点都指向entry本身。
 66 static inline void list_del_init(struct list_head *entry)
 67 {
 68     __list_del_entry(entry);
 69     INIT_LIST_HEAD(entry);
 70 }
 71
 72 // 用new节点取代old节点
 73 static inline void list_replace(struct list_head *old,
 74                 struct list_head *new)
 75 {
 76     new->next = old->next;
 77     new->next->prev = new;
 78     new->prev = old->prev;
 79     new->prev->next = new;
 80 }
 81
 82 // 双链表是否为空
 83 static inline int list_empty(const struct list_head *head)
 84 {
 85     return head->next == head;
 86 }
 87
 88 // 获取"MEMBER成员"在"结构体TYPE"中的位置偏移
 89 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
 90
 91 // 根据"结构体(type)变量"中的"域成员变量(member)的指针(ptr)"来获取指向整个结构体变量的指针
 92 #define container_of(ptr, type, member) ({           93     const typeof( ((type *)0)->member ) *__mptr = (ptr);     94     (type *)( (char *)__mptr - offsetof(type,member) );})
 95
 96 // 遍历双向链表
 97 #define list_for_each(pos, head)  98     for (pos = (head)->next; pos != (head); pos = pos->next)
 99
100 #define list_for_each_safe(pos, n, head) 101     for (pos = (head)->next, n = pos->next; pos != (head); 102         pos = n, n = pos->next)
103
104 #define list_entry(ptr, type, member) 105     container_of(ptr, type, member)
106
107 #endif

双向链表测试代码(test.c)

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <string.h>
 4 #include "list.h"
 5
 6 struct person
 7 {
 8     int age;
 9     char name[20];
10     struct list_head list;
11 };
12
13 void main(int argc, char* argv[])
14 {
15     struct person *pperson;
16     struct person person_head;
17     struct list_head *pos, *next;
18     int i;
19
20     // 初始化双链表的表头
21     INIT_LIST_HEAD(&person_head.list);
22
23     // 添加节点
24     for (i=0; i<5; i++)
25     {
26         pperson = (struct person*)malloc(sizeof(struct person));
27         pperson->age = (i+1)*10;
28         sprintf(pperson->name, "%d", i+1);
29         // 将节点链接到链表的末尾
30         // 如果想把节点链接到链表的表头后面,则使用 list_add
31         list_add_tail(&(pperson->list), &(person_head.list));
32     }
33
34     // 遍历链表
35     printf("==== 1st iterator d-link ====\n");
36     list_for_each(pos, &person_head.list)
37     {
38         pperson = list_entry(pos, struct person, list);
39         printf("name:%-2s, age:%d\n", pperson->name, pperson->age);
40     }
41
42     // 删除节点age为20的节点
43     printf("==== delete node(age:20) ====\n");
44     list_for_each_safe(pos, next, &person_head.list)
45     {
46         pperson = list_entry(pos, struct person, list);
47         if(pperson->age == 20)
48         {
49             list_del_init(pos);
50             free(pperson);
51         }
52     }
53
54     // 再次遍历链表
55     printf("==== 2nd iterator d-link ====\n");
56     list_for_each(pos, &person_head.list)
57     {
58         pperson = list_entry(pos, struct person, list);
59         printf("name:%-2s, age:%d\n", pperson->name, pperson->age);
60     }
61
62     // 释放资源
63     list_for_each_safe(pos, next, &person_head.list)
64     {
65         pperson = list_entry(pos, struct person, list);
66         list_del_init(pos);
67         free(pperson);
68     }
69
70 }

运行结果

==== 1st iterator d-link ====
name:1 , age:10
name:2 , age:20
name:3 , age:30
name:4 , age:40
name:5 , age:50
==== delete node(age:20) ====
==== 2nd iterator d-link ====
name:1 , age:10
name:3 , age:30
name:4 , age:40
name:5 , age:50

原文地址:https://www.cnblogs.com/alantu2018/p/8465133.html

时间: 2024-10-07 19:02:57

Linux内核中双向链表的经典实现的相关文章

Linux中的两个经典宏定义:获取结构体成员地址,根据成员地址获得结构体地址;Linux中双向链表的经典实现。

倘若你查看过Linux Kernel的源码,那么你对 offsetof 和 container_of 这两个宏应该不陌生.这两个宏最初是极客写出的,后来在Linux内核中被推广使用. 1. offsetof 1.1 offsetof介绍 定义:offsetof在linux内核的include/linux/stddef.h中定义.#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER) 说明:获得结构体(TYPE)的变量成员(

大话Linux内核中锁机制之RCU、大内核锁

大话Linux内核中锁机制之RCU.大内核锁 在上篇博文中笔者分析了关于完成量和互斥量的使用以及一些经典的问题,下面笔者将在本篇博文中重点分析有关RCU机制的相关内容以及介绍目前已被淘汰出内核的大内核锁(BKL).文章的最后对<大话Linux内核中锁机制>系列博文进行了总结,并提出关于目前Linux内核中提供的锁机制的一些基本使用观点. 十.RCU机制 本节将讨论另一种重要锁机制:RCU锁机制.首先我们从概念上理解下什么叫RCU,其中读(Read):读者不需要获得任何锁就可访问RCU保护的临界

大话Linux内核中锁机制之完成量、互斥量

大话Linux内核中锁机制之完成量.互斥量 在上一篇博文中笔者分析了关于信号量.读写信号量的使用及源码实现,接下来本篇博文将讨论有关完成量和互斥量的使用和一些经典问题. 八.完成量 下面讨论完成量的内容,首先需明确完成量表示为一个执行单元需要等待另一个执行单元完成某事后方可执行,它是一种轻量级机制.事实上,它即是为了完成进程间的同步而设计的,故而仅仅提供了代替同步信号量的一种解决方法,初值被初始化为0.它在include\linux\completion.h定义. 如图8.1所示,对于执行单元A

Linux内核中的算法和数据结构

算法和数据结构纷繁复杂,但是对于Linux Kernel开发人员来说重点了解Linux内核中使用到的算法和数据结构很有必要. 在一个国外问答平台stackexchange.com的Theoretical Computer Science子板有一篇讨论实际使用中的算法和数据结构,Vijay D做出的详细的解答,其中有一部分是Basic Data Structures and Algorithms in the Linux Kernel对Linux内核中使用到的算法和数据结构做出的归纳整理.详情参考

Linux内核中常用String库函数实现

//只列举了部分常用的strcpy,strcmp,strcat,strchr,strstr,strpbrk...  char *strcpy(char *dest, const char *src) { char *tmp = dest; while ((*dest++ = *src++) != '\0') /* nothing */; return tmp; } char *strncpy(char *dest, const char *src, size_t count) { char *t

Linux内核中的jiffies及其作用介绍及jiffies等相关函数详解

在LINUX的时钟中断中涉及至二个全局变量一个是xtime,它是timeval数据结构变量,另一个则是jiffies,首先看timeval结构struct timeval{time_t tv_sec; /***second***/susecond_t tv_usec;/***microsecond***/}到底microsecond是毫秒还是微秒?? 1秒=1000毫秒(3个零),1秒=1000 000微秒(6个零),1秒=1000 000 000纳秒(9个零),1秒=1000 000 000

route-显示并设置Linux内核中的网络路由表

route命令 网络配置 route命令用来显示并设置Linux内核中的网络路由表,route命令设置的路由主要是静态路由.要实现两个不同的子网之间的通信,需要一台连接两个网络的路由器,或者同时位于两个网络的网关来实现. 语法 route(选项)(参数) 选项 -A:设置地址类型: -C:打印将Linux核心的路由缓存: -v:详细信息模式: -n:不执行DNS反向查找,直接显示数字形式的IP地址: -e:netstat格式显示路由表: -net:到一个网络的路由表: -host:到一个主机的路

C语言在linux内核中do while(0)妙用之法

为什么说do while(0) 妙?因为它的确就是妙,而且在linux内核中实现是相当的妙,我们来看看内核中的相关代码: #define db_error(fmt, ...) do { fprintf(stderr, "(error): "); fprintf(stderr, fmt, ##__VA_ARGS__); } while (0) 这只是个普通的调试信息的输出,有人便会认为,你这不是多此一举吗?去掉do while(0)不一样也实现了吗?其实不然,我们看看例子就清楚了,尽管很

Linux内核中的中断栈与内核栈的补充说明【转】

转自:http://blog.chinaunix.net/uid-12461657-id-3487463.html 原文地址:Linux内核中的中断栈与内核栈的补充说明 作者:MagicBoy2010 中断栈与内核栈的话题更多地属于内核的范畴,所以在<深入Linux设备驱动程序内核机制>第5章“中断处理”当中,基本上没怎么涉及到上述内容,只是在5.4节有些许的文字讨论中断栈在中断嵌套情形下可能的溢出问题. 本贴在这个基础上对内核栈与中断栈的话题做些补充,讨论基于x86 32位系统,因为64位系