[离散时间信号处理学习笔记] 12. 连续时间信号的离散时间处理以及离散时间信号的连续时间处理

连续时间信号与离散时间信号之间的关系

下表为各符号的解释

Symbol FT DTFT Info
$x_c(t)$ $X_c(j\Omega)$ - 连续时间信号
$x[n]$ - $X(e^{j\omega})$ 离散时间信号
$s(t)$ $S(j\Omega)$ - 周期脉冲函数、即采样函数
$x_s(t)$ $X_s(j\Omega)$ - 信号周期采样的数学表示
$\Omega_N$ - - 奈奎斯特频率,也就是带限信号的受限频率
$\Omega_s$ - - 采样频率
$T$ - - 采样周期
$h_r(t)$ $H_r(j\Omega)$ - 连续时间低通滤波器
$h[n]$ - $H(e^{j\omega})$ 离散时间单位脉冲响应
$h_c(t)$ $H_c(j\Omega)$   连续时间单位脉冲响应

C/D转换

从$x_c(t)$到$x[n]$是一个连续到离散的过程,该过程包括以下步骤:

连续信号$x_c(t)$与采样信号$s(t)$相乘得到采样值加权的周期脉冲$x_s(t)$,最后再经过一步转换才能变成离散的采样序列$x[n]$,这就是一个数学上理想的连续到离散的转换,记为C/D。

D/C转换

那么反过来,从$x[n]$到$x_c(t)$就是一个离散到连续的过程,该过程包括以下步骤:

离散序列$x[n]$转换成周期为$T$的加权周期脉冲$x_s(t)$,然后就可以按照上一节课所描述的重构方法来得到原连续信号$x_c(t)$,这就是一个数学上理想的离散到连续的转换,记为$D/C$。

连续信号与离散信号的傅里叶变换之间的联系

离散时间序列$x[n]$与连续时间信号$x_c(t)$之间有如下关系

$x[n] = x_c(nT)\ ,\ -\infty<n<\infty$

对$x_s(t)$进行傅里叶变换可以得到

$\displaystyle{ X_s(j\Omega) = \sum_{n=-\infty}^{\infty}x_c(nT)e^{-j\Omega T n} = \sum_{n=-\infty}^{\infty}x[n]e^{-j\Omega Tn} }$

对$x[n]$进行离散傅里叶变换可以得到

$\displaystyle{ X(e^{j\omega}) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} }$

对比发现

$\displaystyle{ X_s(j\Omega) = X(e^{j\omega})|_{\omega = \Omega T} = X(e^{j\Omega T})}$

$X(j\Omega)$相当于$X(e^{j\omega})$进行了一个$\omega = \Omega T$的尺度变换,这是因为$x[n]$的离散时间傅里叶变换的是假设以$1$为周期对信号进行采集的,而这里实际的采集周期为$T$。

另外我们上一课通过傅里叶卷积定理得到了一个公式

$\begin{align*}
X_s(j\Omega) &= \frac{1}{T}X_c*Ш_{\frac{2\pi}{T}}\\
&= \frac{1}{T}X_c(j\Omega)*\sum_{k=-\infty}^{\infty}\delta\left(\Omega-\frac{2\pi k}{T}\right)\\
&= \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c\left[j\left( \Omega-\frac{2\pi k}{T} \right )\right ]\quad \delta\ convolution\ theorem\\
&= \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c\left( j\left(  \Omega-k\Omega_s \right) \right) \quad letting\ \Omega_s=\frac{2\pi}{T}
\end{align*}$

结合上述结论,可以得到$x[n]$的DTFT为

$\begin{align*}  X(e^{j\omega})|_{\omega=\Omega T}
&= X(e^{j\Omega T})\\
&= X(j\Omega) \\
&= \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c\left( j\left(  \Omega-k\Omega_s \right) \right) \\
&= \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c\left[ j\left(\frac{\omega}{T}-\frac{2\pi k}{T} \right )\right ] \qquad \left\{\begin{matrix}\Omega &= &\frac{\omega}{T}\\ \Omega_s &= &\frac{2\pi}{T} \end{matrix} \right.\\
\end{align*}$

也就是说,如果对连续函数$x_c(t)$进行周期为$T$的采样得到离散序列$x[n]$,那么它们的傅里叶变换之间就有以下关系

$\color{red}{\begin{align*} X(e^{j\omega})
&= \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c\left[ j\left(\Omega-\frac{2\pi k}{T} \right ) \right ]\\
&= \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c\left[ j\left(\frac{\omega}{T}-\frac{2\pi k}{T} \right )\right ] \qquad \omega=\Omega T
\end{align*}}$

连续时间信号的离散时间处理

在我们生活的世界当中,无论是声音、光、电等都是连续的信号,而计算机处理的是离散信号,因此一般来说我们都需要先把连续信号转换成离散信号,计算机对该离散信号进行处理后再重新转换为连续信号进行输出。

这里假设系统以及输入信号都满足奈奎斯特采样定理。接下来,我们主要讨论离散时间系统是如何对连续信号产生影响的。

频率响应

输出$y_r(t) = \mathcal{F}^{-1}Y_{r}(j\Omega)$,而通过对上图系统的逆推,我们可以得到以下式子

$\begin{align*}
Y_r(j\Omega)
&= H_r(j\Omega)Y(e^{j\omega}) \qquad lowpass\ filter\ H_r(j\Omega)\ for\ restruction\\
&= H_r(j\Omega)H(e^{j\omega})X(e^{j\omega})\qquad LTI\ system\ frequency\ response\ H(e^{j\omega})\\
&= H_r(j\Omega)H(e^{j\Omega T})\frac{1}{T}\sum_{k=-\infty}^{\infty}X_c\left[j\left(\Omega-\frac{2\pi k}{T} \right )\right ] \\
&=\left\{ \begin{matrix} H(e^{j\Omega T})X_c(j\Omega), & |\Omega|<\pi/T\\ 0,& |\Omega|\geqslant \pi/T\end{matrix}\right.
\qquad because\ H_r(j\Omega) = \left\{\begin{matrix}T, & |\Omega|<\pi/T\\ 0, & |\Omega|\geqslant \pi/T \end{matrix}\right.\\
&= H_{eff}(j\Omega)X_c(j\Omega) \qquad H_{eff}(j\Omega) = \left\{ \begin{matrix} H(e^{j\Omega T}), & |\Omega|<\pi/T\\ 0,& |\Omega|\geqslant \pi/T\end{matrix}\right.
\end{align*}$

从该推导的式子可以得到以下结论

对于一个连续时间信号的离散时间处理系统,如果该系统满足两个因素:

  • 离散时间系统的是LTI系统
  • 输入信号为带限信号,并且采样率满足奈奎斯特采样定理

则该系统等效于一个连续时间LTI系统,其有效频率响应为

$\color{red}{H_{eff}(j\Omega) = \left\{ \begin{matrix} H(e^{j\Omega T}), & |\Omega|<\pi/T\\ 0,& |\Omega|\geqslant \pi/T\end{matrix}\right.}$

单位脉冲响应

该等式可以说是指出了离散时间系统的频率响应$H(e^{j\Omega T})$以及等效连续时间系统的频率响应$H_c(j\Omega) = H_{eff}(j\Omega)$之间的关系。那么它们的单位脉冲响应之间又具有怎样的关系呢?

这里假设连续时间单位脉冲响应$h_c(t)$与离散时间单位脉冲响应$h[n]$之间有如下关系

$h[n] = h_c(nT)$

那么有

\begin{align*}
H_{eff}(j\Omega) &= \left\{ \begin{matrix} H(e^{j\Omega T}), & |\Omega|<\pi/T\\ 0,& |\Omega|\geqslant \pi/T\end{matrix}\right.\\
&= \left\{ \begin{matrix} \displaystyle{\frac{1}{T}\sum_{k=-\infty}^{\infty}H_{c}\left[j\left( \Omega-\frac{2\pi k}{T} \right)\right]}, & |\Omega|<\pi/T\\ 0,& |\Omega|\geqslant \pi/T\end{matrix}\right.\qquad assume\ h[n]=h_c(nT)\\
&= \left\{ \begin{matrix} \frac{H_c(j\Omega)}{T}, & |\Omega|<\pi/T\\ 0,& |\Omega|\geqslant \pi/T\end{matrix}\right.\\
\end{align*}

因此我们如果稍作调整,假设

$h[n] = Th_c(nT)$

则能使得$H_{eff}(j\Omega) = H_c(j\Omega),|\Omega|<\pi/T$。

离散时间信号的连续时间处理

这种系统相对来说较为罕见,一般不会用这种方法来实现离散时间系统,不过它提供了对某些离散时间系统的一种有用解释,如下面的例子,非整数延迟系统。

这里假设系统以及输入信号都满足奈奎斯特采样定理。因此有

$x_c(t) = \displaystyle{ \sum_{n=-\infty}^{\infty}x[n]\frac{sin[\pi(t-nT)/T]}{\pi(t-nT)/T} }$

$y_c(t) = \displaystyle{ \sum_{n=-\infty}^{\infty}y[n]\frac{sin[\pi(t-nT)/T]}{\pi(t-nT)/T} }$

式中,$x[n] = x_c(nT),y[n] = y_c(nT)$。它们在频域有如下关系(第一小节的结论)

$X_c(j\Omega) = TX(e^{j\Omega T}),\qquad |\Omega|<\pi/T$

$Y_c(j\Omega) = H_c(j\Omega)X_c(j\Omega)$

$Y(e^{j\omega}) = \frac{1}{T}Y_c\left( j\frac{\omega}{T} \right),\qquad |\omega|<\pi$

这三条式子整理后可以得到

$\color{red}{H(e^{j\omega}) = H_c(j\frac{\omega}{T}),\qquad |\omega|<\pi}$

或者可以写成

$\color{red}{H(e^{j\Omega T}) = H_c(j\Omega),\qquad |\Omega|<\pi/T}$

例子

考虑一个离散时间系统,其频率响应为

$H(e^{j\omega}) = e^{-j\omega\Delta}$

当$\Delta$是一个整数时,该系统有一个明确的解释——延迟$\Delta$,即

$y[n] = x[n-\Delta]$

当$\Delta$不是整数时,上面的式子没有正规意义,也无法通过对$x[n]$移位得到输出。此时我们可以用本节学习的内容来进行解释,把该离散时间系统等效为对$x[n]$进行D/C转换后,进行连续时间处理,然后进行C/D转换得到输出。其中的连续时间处理系统的频率响应为

$H_c(j\Omega) = H(e^{j\Omega T}) = e^{-j\Omega T\Delta}$

通过该频率响应可以求得,对于连续时间信号$x_c(t)$以及连续时间信号$y_c(t)$,他们具有如下关系

$y_c(t) = x_c(t-T\Delta)$

其中$x_c(t)$是通过对$x[n]$进行内插得到的,在对$x_c(t)$进行$T\Delta$的延迟后得到$y_c(t)$,然后进行周期为$T$的采样则得到$y[n]$,即

$\begin{align*}
y[n] &=y_c(nT)\\
&= x_c(nT-T\Delta)\\
&= \left.\sum_{k=-\infty}^{\infty}x[k]\frac{sin[\pi(t-T\Delta-kT)/T]}{\pi(t-T\Delta-kT)/T}\right|_{t=nT}\\
&= \sum_{k=-\infty}^{\infty}x[k]\frac{sin\pi(n-k-\Delta)}{\pi(n-k-\Delta)}\qquad
\end{align*}$

按照卷积的定义,该离散时间系统的单位脉冲响应为

$h[n] = \frac{sin\pi(n-\Delta)}{\pi(n-\Delta)}$

原文地址:https://www.cnblogs.com/TaigaCon/p/8460415.html

时间: 2024-10-19 16:41:35

[离散时间信号处理学习笔记] 12. 连续时间信号的离散时间处理以及离散时间信号的连续时间处理的相关文章

[离散时间信号处理学习笔记] 11. 连续时间信号的采样与重构

这一节主要讨论采样定理,在<傅里叶变换及其应用及其学习笔记>中有进行过推导与讲解,因此下面的内容也大同小异.不过如果是从<离散时间信号处理>这一本书的内容开始学习到这一节,则应先学习本文内容所需要的一些前置知识:傅里叶变换(连续时间),主要用到的是脉冲函数$\delta$,以及周期脉冲函数Ш的傅里叶变换与相关性质. 周期采样 假设有连续信号$x_c(t)$,我们需要通过对该信号进行采样才能得到离散信号,即样本序列$x[n]$.连续信号与离散信号有以下关系: $x[n] = x_c(

[离散时间信号处理学习笔记] 14. 多采样率信号处理

多采样率信号处理一般是指利用增采样.减采样.压缩器和扩张器等方式来提高信号处理系统效率的技术(These multirate techniques refer in general to utilizing upsampling, downsampling, compressors, and expanders in a variety of ways to increase the efficiency of signal-processing systems. )本文章主要讨论多采样率技术中

[离散时间信号处理学习笔记] 2. 线性时不变系统

线性时不变系统的定义 线性时不变系统(LTI)是离散时间系统中特别重要的一种系统,该系统包含线性以及时不变性,用卷积来表征. 前面有讲过序列$x[n]$可以表示成幅度加权的延迟单位样本序列的和的形式 $x[n] = \displaystyle{ \sum_{k=-\infty}^{\infty}x[k]\delta[n-k] }$ 因此离散时间系统可以表示成如下形式 $y[n] = T\left\{ \displaystyle{ \sum_{k=-\infty}^{\infty}x[k]\del

[离散时间信号处理学习笔记] 8. z逆变换

z逆变换的计算为下面的复数闭合曲线积分: $x[n] = \displaystyle{\frac{1}{2\pi j}}\oint_{C}X(z)z^{n-1}dz$ 式中$C$表示的是收敛域内的一条闭合曲线.该积分表达式可以利用复数变量理论下的柯西积分定理推导得到.不过本门课程用不上这条式子,因为在离散LTI系统分析中所遇到的典型序列和z变换,有如下更简单的z逆变换求解办法. 观察法(查表) 下面是一个常见序列的z变换表格,通过查表可以由z变换所得的函数反过来求得原序列 Sequence Tr

[离散时间信号处理学习笔记] 9. z变换性质

z变换描述 $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X(z) ,\quad ROC=R_x$ 序列$x[n]$经过z变换后得到复变函数$X(z)$,该函数的收敛域为$R_x$ 线性 z变换的线性性质 $ax_1[n]+bx_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} aX_1(z)+bX_2(z),\quad ROC\ contains\ R_{x_1}\cap R_{x_2}$ 证明

[离散时间信号处理学习笔记] 10. z变换与LTI系统

我们前面讨论了z变换,其实也是为了利用z变换分析LTI系统. 利用z变换得到LTI系统的单位脉冲响应 对于用差分方程描述的LTI系统而言,z变换将十分有用.有如下形式的差分方程: $\displaystyle{ y[n] = –\sum_{k=1}^{N}\left(\frac{a_k}{a_0}\right)y[n-k]+\sum_{k=0}^{M}\left(\frac{b_k}{a_0}\right)x[n-k] }$ 我们可以通过z变换得到上述式子的单位脉冲响应. 等式两边进行z变换 $

数字语音信号处理学习笔记——语音信号的同态处理(2)

5.4 复倒谱和倒谱 定义       设信号x(n)的z变换为X(z) = z[x(n)],其对数为: (1) 那么的逆z变换可写成: (2) 取(1)式则有 (3) 于是式子(2)则可以写成       (4) 则式子(4)即为信号x(n)的复倒谱的定义.因为一般为复数,故称为复倒谱.如果对的绝对值取对数,得 (5) 则为实数,由此求出的倒频谱c(n)为实倒谱,简称为倒谱,即 (6) 在(3)式中,实部是可以取唯一值的,但对于虚部,会引起唯一性问题,因此要求相角为w的连续奇函数. 性质: 为

数字语音信号处理学习笔记——语音信号的短时时域分析(1)

3.1 概述 语音信号是一种非平稳的时变信号,它携带着各种信息.在语音编码.语音合成.语音识别和语音增强等语音处理中都需要提取语音中包含的各种信息.一般而言语音处理的目的有两种:一种是对语音信号进行分析,提取特征参数,用于后续处理:另一种是加工语音信号,例如在语音增强中对含噪语音进行背景噪声抑制,以获得相对"干净"的语音:在语音合成方中需要对分段语音进行拼接平滑,获得主观音质较高的合成语音,这方面的应用同样是建立在分析并提取语音信号信息的基础上的.总之,语音信号分析的目的就在于方便有效

数字语音信号处理学习笔记——语音信号的数字模型(3)

2.4 语音的感知       2.4.1 几个概念       语音的听觉感知是一个复杂的人脑-心理过程.对听觉感知的研究还很不成熟.听觉感知的试验主要还在测试响度.音高和掩蔽效应等.人耳听觉界限的范围大约为20Hz~20kHz.在频率范围低端,感觉声音变成低频脉冲串,在高端感觉声音减小直至完全听不到一点儿声响.语音感知的强度范围是0~130dB声压级,声音强度太高,感到难以忍受,强度太低则感到寂静无声. 1.响度 这是频率和强度级的函数.通常用响度(单位为宋)和响度级(单位为方)来表示. 人