题意:斐波那契数列,当长度大于8时。要输出前四位和后四位
思路:后四位非常easy,矩阵高速幂取模,难度在于前四位的求解。
已知斐波那契数列的通项公式:f(n) = (1 / sqrt(5)) * (((1 + sqrt(5)) / 2) ^ n - ((1 + sqrt(5)) / 2) ^ n)。当n >= 40时((1 + sqrt(5)) / 2) ^ n近似为0。
所以我们如果f(n) = t * 10 ^ k(t为小数),所以当两边同一时候取对数时。log10(t * 10 ^ k) = log10(t) + k = log10((1 / sqrt(5)) * (((1 + sqrt(5)) / 2))) = log10(1
/ sqrt(5)) + n * log10(((1 + sqrt(5)) / 2)))。然后减掉整数k。就能够得到log10(t),进而得到t值。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; //typedef long long ll; typedef __int64 ll; const int MOD = 10000; struct mat{ ll s[2][2]; mat(ll a = 0, ll b = 0, ll c = 0, ll d = 0) { s[0][0] = a; s[0][1] = b; s[1][0] = c; s[1][1] = d; } mat operator * (const mat& c) { mat ans; memset(ans.s, 0, sizeof(ans.s)); for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) for (int k = 0; k < 2; k++) { ans.s[i][j] = (ans.s[i][j] + s[i][k] * c.s[k][j]); if (ans.s[i][j] >= 100000000) ans.s[i][j] %= MOD; } return ans; } }c(1, 1, 1, 0), tmp(1, 0, 0, 1); ll n; mat pow_mod(ll k) { if (k == 0) return tmp; else if (k == 1) return c; mat a = pow_mod(k / 2); mat ans = a * a; if (k % 2) ans = ans * c; return ans; } int main() { while (scanf("%I64d", &n) != EOF) { if (n == 0) printf("0\n"); else { mat ans = pow_mod(n - 1); if (n >= 40) { double k = log10(1.0 / sqrt(5.0)) + (double)n * log10((1.0 + sqrt(5.0)) / 2.0); double temp = k; temp = k - (int)temp; printf("%d...%.4I64d\n", (int)(1000.0 * pow(10.0, temp)), ans.s[0][0] % MOD); } else printf("%I64d\n", ans.s[0][0]); } } return 0; }
时间: 2024-10-12 10:11:18