【网络流24题】餐巾计划问题(最小费用最大流)

【网络流24题】餐巾计划问题(最小费用最大流)

题面

COGS
洛谷上的数据范围更大,而且要开longlong

题解

餐巾的来源分为两种:
①新买的
②旧的拿去洗
所以,两种情况分别建图

先考虑第一种
因为新买餐巾没有任何限制,并且随时可以买
所以直接从源点向每一天连边,容量为INF,费用为餐巾的价格
因为流要流出去,所以每个点向汇点连边,容量为每天的用量,费用为0

第二种,旧的拿去洗
首先考虑一下怎么算有多少旧的餐巾
每天用旧的餐巾的数量值一定的,不可能变多
因此从源点向这些点连边,容量为每天的用量,费用为0
因为旧餐巾可以累积,所以从上一天向下一天连边,容量为INF,费用为0
接下来是快洗和慢洗,这两种情况是一样的
直接从表示旧餐巾数量的这些点向洗完的那一天连边,
容量为INF,费用为洗餐巾的费用

这样子连边保证最大流为总的餐巾需求数
也就是说,每天一定会流满(因为中间的边容量是INF,如果要割开只能割源点或者汇点连出去的边,而这些边的容量和就是餐巾的总需求数)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define INF 1000000000
#define MAXL 500000
#define MAX 2000
inline int read()
{
    int x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int n,a[MAX];
struct Line
{
    int v,next,w,fy;
}e[MAXL];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w,int fy)
{
    e[cnt]=(Line){v,h[u],w,fy};h[u]=cnt++;
    e[cnt]=(Line){u,h[v],0,-fy};h[v]=cnt++;
}
int dis[MAX],pe[MAX],pv[MAX];
int S,T,Cost,Flow;
bool vis[MAX];
bool SPFA()
{
    for(int i=S;i<=T;++i)dis[i]=INF;
    dis[S]=0;
    queue<int> Q;Q.push(S);
    while(!Q.empty())
    {
        int u=Q.front();Q.pop();
        for(int i=h[u];i;i=e[i].next)
        {
            int v=e[i].v;
            if(e[i].w&&dis[v]>dis[u]+e[i].fy)
            {
                dis[v]=dis[u]+e[i].fy;pe[v]=i;pv[v]=u;
                if(!vis[v])vis[v]=true,Q.push(v);
            }
        }
        vis[u]=false;
    }
    if(dis[T]==INF)return false;
    int fl=INF;
    for(int i=T;i!=S;i=pv[i])fl=min(fl,e[pe[i]].w);
    for(int i=T;i!=S;i=pv[i])e[pe[i]].w-=fl,e[pe[i]^1].w+=fl;
    Flow+=fl;Cost+=fl*dis[T];
    return true;
}
int mm,ff,p;
int main()
{
    freopen("napkin.in","r",stdin);
    freopen("napkin.out","w",stdout);
    n=read();
    S=0,T=n+n+1;
    for(int i=1;i<=n;++i)a[i]=read(),Add(S,i,a[i],0),Add(i+n,T,a[i],0);
    p=read();
    for(int i=1;i<=n;++i)Add(S,i+n,INF,p);
    mm=read();ff=read();
    for(int i=1;i+mm<=n;++i)Add(i,i+n+mm,INF,ff);
    mm=read();ff=read();
    for(int i=1;i+mm<=n;++i)Add(i,i+n+mm,INF,ff);
    for(int i=1;i<n;++i)Add(i,i+1,INF,0);
    while(SPFA());
    printf("%d\n",Cost);
    return 0;
}

原文地址:https://www.cnblogs.com/cjyyb/p/8175687.html

时间: 2024-10-12 00:27:41

【网络流24题】餐巾计划问题(最小费用最大流)的相关文章

BZOJ 1221 HNOI 2001 软件开发/网络流24题 餐巾计划问题 最小费用最大流

题目大意:有一个软件公司,每天需要给一些员工准备消毒毛巾,这些毛巾可以循环利用,但是需要消毒.可以将毛巾送去消毒,有两种方式,A天fA花费,B天fB花费.或者还可以直接买新毛巾,问为了满足员工的需求,至少需要花多少钱. 思路:经典的费用流问题.将每一天拆点,S向每一天<<1连边,约束每一天需要多少毛巾:每一天<<1|1向T连边,约束每一天需要的毛巾.每一天<<1向这一天清洗的毛巾能够使用的那一天<<1|1,注意A和B.毛巾可以延后使用,那么每一天<&l

【Codevs1237&amp;网络流24题餐巾计划】(费用流)

题意:一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同. 假设第 i 天需要 ri块餐巾(i=1,2,-,N).餐厅可以购买新的餐巾,每块餐巾的费用为 p 分: 或者把旧餐巾送到快洗部,洗一块需 m 天,其费用为 f 分: 或者送到慢洗部,洗一块需 n 天(n>m),其费用为 s<f 分.每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗. 但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量.试设计一个算法为餐厅合理地安排好 N 天

LiberOJ #6013. 「网络流 24 题」负载平衡 最小费用最大流 供应平衡问题

#6013. 「网络流 24 题」负载平衡 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. 输入格式 文件的第 1 11 行中有 1 11 个正整数 n nn,表示有 n nn 个仓库.第 2 22 行中有 n nn 个

[网络流24题] 餐巾计划问题 [费用流]

题面: https://www.luogu.org/problemnew/show/P1251 思路: 这道题乍一看,可以跑上下界费用流 代码量.难度 -> inf 其实不然,我们可以用费用流的特殊处理去掉下界 观察题目,每天要求有ri块餐巾 首先,有贪心如下: 当且仅当每天可供使用的餐巾正好满足需求时,可以有最小费用 证明:若某一天有多一块餐巾,则其根本来源一定是买多了,而且在这块餐巾参与的周转中还消费了一些清洗费用,同时它造成其余的日子里也会有餐巾被闲置 因此首先把题目转化为"每天正好

网络流24题 餐巾计划问题

题目描述 一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同.假设第 i 天需要 ri块餐巾(i=1,2,…,N).餐厅可以购买新的餐巾,每块餐巾的费用为 p 分:或者把旧餐巾送到快洗部,洗一块需 m 天,其费用为 f 分:或者送到慢洗部,洗一块需 n 天(n>m),其费用为 s<f 分.每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗.但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量.试设计一个算法为餐厅合理地安排好 N 天中餐

[网络流24题] 餐巾计划

https://www.luogu.org/problemnew/show/1251 样例的构图: #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define N 4005 #define M 12001 const int inf=1e17; typedef long long LL; int tot=1; in

网络流(费用流):[网络流24题] 餐巾

[网络流24题] 餐巾 [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N).餐厅可以从三种途径获得餐巾. (1)购买新的餐巾,每块需p分: (2)把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f<p).如m=l时,第一天送到快洗部的餐巾第二天就可以使用了,送慢洗的情况也如此. (3)把餐巾送到慢洗部,洗一块需n天(n>m),费用需s分(s<f). 在每天结束时,餐厅必须决定多少块用过的餐巾送到快洗部,多少块送慢洗部.在每天开始时,餐厅必须决定是否购买新餐

【网络流24题】骑士共存问题(最大流)

[网络流24题]骑士共存问题(最大流) 题面 Cogs 题解 这题本质上和方格取数问题没有任何区别 首先也是可以黑白染色 因为马必定会跳到异色点上面去 然后同样的,源点向一种颜色,另一种颜色向汇点连边 因为代价就是1,所以容量都是1 这里考虑的"相邻"的情况是马的跳法 因此,枚举从当前点能够到达的位置,连一条容量为INF的边过去 障碍直接特殊考虑就行了 最后的答案就是所有可以放的位置数减去最大流(最小割) #include<iostream> #include<cst

CGOS461 [网络流24题] 餐巾(最小费用最大流)

题目这么说的: 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N).餐厅可以从三种途径获得餐巾. 购买新的餐巾,每块需p分: 把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f<p).如m=l时,第一天送到快洗部的餐巾第二天就可以使用了,送慢洗的情况也如此. 把餐巾送到慢洗部,洗一块需n天(n>m),费用需s分(s<f). 在每天结束时,餐厅必须决定多少块用过的餐巾送到快洗部,多少块送慢洗部.在每天开始时,餐厅必须决定是否购买新餐巾及多少,使洗好的和新购的餐巾之和满足当

【COGS 461】[网络流24题] 餐巾 最小费用最大流

既然是最小费用最大流我们就用最大流来限制其一定能把每天跑满,那么把每个表示天的点向T连流量为其所需餐巾,费用为0的边,然后又与每天的餐巾对于买是无限制的因此从S向每个表示天的点连流量为INF,费用为一个餐巾的费用的边,然后我们考虑怎么用旧餐巾,我们用旧餐巾,要既不影响本点流量,也不影响本点费用,因此我们在开一坨点表示其对应得那天的旧餐巾,并通过他向离他快洗和离他慢洗天数的天的点连边,流量为Inf,费用为快洗.慢洗的费用,然后对于多余的旧餐巾,我们在一排天点中间从第一天连续地连到最后一天,流量为I