MongoDB副本集运维小结

前面的文章介绍了MongoDB副本集和分片集群的做法,下面对MongoDB集群的日常维护操作进行小总结:

MongDB副本集故障转移功能得益于它的选举机制。选举机制采用了Bully算法,可以很方便从分布式节点中选出主节点。

Bully算法是一种协调者(主节点)竞选算法,主要思想是集群的每个成员都可以声明它是主节点并通知其他节点。别的节点可以选择接受这个声称或是拒绝并进入主
节点竞争。被其他所有节点接受的节点才能成为主节点。节点按照一些属性来判断谁应该胜出。这个属性可以是一个静态ID,也可以是更新的度量像最近一次事务
ID(最新的节点会胜出)。

1)MongoDB集群的节点数量
官方推荐MongoDB副本集的成员数量为奇数,且选举要求参与的节点数量必须大于成员数的一半。假设MongoDB集群有3个节点,那么只要有2个节点活着就可以选举;
如果有5个,那么活3个节点就可以选举;如果有7个节点,那么活4个就可以选举.....

MongoDB集群最多允许12个副本集节点,其中最多7个节点参与选举。这是为了减少心跳请求的网络流量和选举话费的时间,心跳每2秒发送一次。

MongoDB集群最多12个副本集节点是因为没必要一份数据复制那么多份,备份太多反而增加了网络负载和拖慢了集群性能;而最多7个节点参与选举是因为内部选举机制
节点数量太多就会导致1分钟内还选不出主节点,凡事只要适当就好。

2)MongoDB心跳
整个MongoDB集群需要保持一定的通信才能知道哪些节点活着哪些节点挂掉。MongoDB节点会向副本集中的其他节点每两秒就会发送一次pings包,如果其他节点在10秒
钟之内没有返回就标示为不能访问。每个节点内部都会维护一个状态映射表,表明当前每个节点是什么角色、日志时间戳等关键信息。如果是主节点,除了维护映射
表外还需要检查自己能否和集群中内大部分节点通讯,如果不能则把自己降级为secondary只读节点。

3)MongoDB同步
MongoDB副本集同步分为初始化同步和keep复制。初始化同步指全量从主节点同步数据,如果主节点数据量比较大同步时间会比较长。而keep复制指初始化同步过后,
节点之间的实时同步一般是增量同步。初始化同步不只是在第一次才会被处罚,有以下两种情况会触发:
[1] secondary第一次加入,这个是肯定的。
[2] secondary落后的数据量超过了oplog的大小,这样也会被全量复制。

  

原文地址:https://www.cnblogs.com/kevingrace/p/8178549.html

时间: 2024-12-09 21:16:43

MongoDB副本集运维小结的相关文章

总结遇到的几次MongoDB副本集初始化失败问题

前言: 在之前搭建MongoDB集群中,遇到过几次小问题引起的初始化副本集失败,都是之前初学时踩的坑,做个小结. 1.IP错误引起MongoDB副本集初始化失败 这个错误在另一篇文章已经描述过,这里略过不赘述.详情见博客:IP错误引起MongoDB副本集初始化失败 2.PRIMARY与SECONDARY主机mongodb-keyfile文件内容不一致,导致在PRIMARY上添加副本集失败 问题描述: 搭建另外一个MongoDB副本集,主机和角色分配如下: 主机IP 角色 系统 131.10.11

MongoDB副本集

简介 mongodb复制(replication)是将数据同步在多个服务器的过程.主节点记录在其上的所有操作oplog,从节点定期轮询主节点获取这些操作,然后对自己的数据副本执行这些操作,从而保证从节点的数据与主节点一致.复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性,并保证数据的安全性.复制还允许您从硬件故障和服务中断中恢复数据. 而副本集(replica set)是从mongodb 1.6 提供的新功能,比复制功能要强大一些并增加了故障自动切换和自动修复成员节点,

Mongodb副本集实现

MongoDB副本集概述 以下图片摘自MongoDB官方文档:http://docs.mongodb.org/manual/core/replication-introduction/ Primary节点接收客户端所有的写操作,整个副本集只会有一个primary节点.MongoDB副本集提供严格的一致性.主节点将所有的操作写入一个叫oplog的capped collection(这个collection的大小一般为磁盘剩余空间的5%,不同的系统可能不一样,详见http://docs.mongod

zabbix使用Python实现监控MongoDB副本集状态

公司有 Windows 和 Linux 服务器,都搭建了 MongoDB 副本集,并且都要在 zabbix 平台中实现监控.Linux 系统直接使用 shell 脚本即可实现,但是 Windows 系统的不太好实现,我这里使用 Python 来实现.下面脚本同样适用于Linux系统(在 Windows server 2012 和 Centos7.3 系统都验证成功) 思路: 1.安装Python2.7 2.采用 Python 的 pymongo 模块来连接 mongodb 数据库,并认证授权 3

mongodb副本集维护

mongodb副本集维护主要工作: 1.查看副本集状态(集群状态.同步延迟.单个库的运行状态mongostate) 2.增删节点.停节点shutdown mongodb副本集集群同步机制 数据复制的目的是使数据得到最大的可用性,冗余,避免单点故障. 副本集中同一时刻只有一台服务器是可以写的,primary主库上写,从库同步数据 副本集主从复制也是异步同步的过程.slave从primary上获取日志,然后在自己身上完全顺序的执行日志记录的操作(该日志不记录查询操作,只记录更新操作).被同步的日志就

mongodb 副本集配置与说明

1,副本集的原理 副本集的原理与主从很相似,唯一不同的是,在主节点出现故障的时候,主从配置的从服务器不会自动的变为主服务器,而是要通过手动修改配置.但是副表集就不用,它会自动选出一台服务器做为主节点,从而保障系统的稳定性. 2,副本集新的主节点是怎么选举出来的呢 是通过bully算法来的,也就是一致性协议.具体如下 1):当主节点挂了后,副本集会获得其他从节点的最后更新时间与主服务做对比 2):如果所有从节点的最后更新时间都是很旧,那就选举停止 3):如果副本集中的大部分服务器挂了,包含主节点,

Mongodb副本集实现及读写分离

在前面的文章"Mongodb的主从模式搭建实例"中,我们对如何搭建一个主从结构的Mongodb服务器环境进行了简单的介绍.但是对于主从结构,Mongodb官方并不推荐我们使用了,可能是因为主从模式存在以下两个缺点: (1)主节点不可用之后,无法自动切换到从节点,无法确保业务访问的不间断性: (2)所有的读写操作都是对主节点的,造成主节点的访问压力较大: 因此,Mongodb为我们提供了另外一种推荐的使用方法,那就是使用副本集ReplicaSets.在这篇文章中简单描述一下副本集是如何实

MongoDB 副本集(类似高可用) [三]

MongoDB 副本集(类似高可用)1.节点类型standard:常规节点,它存储一份完整的数据副本,参与选举投票,有可能成为活跃节点.passive:存储了完整的数据副本,参与投票,不能成为活跃节点.arbiter:仲裁节点,只参与投票,不接收复制的数据,也不能成为活跃节点.2.参数说明--dbpath   数据文件路径--logpath  日志文件路径--port        端口号,默认是27017.我这里使用的也是这个端口号.--replSet   复制集的名字,一个replica s

mongodb副本集的内部机制(借鉴lanceyan.com)

针对mongodb的内部机制提出以下几个引导性的问题: 副本集故障转移,主节点是如何选举的?能否手动干涉下架某一台主节点. 官方说副本集数量最好是奇数,为什么? mongodb副本集是如何同步的?如果同步不及时会出现什么情况?会不会出现不一致性? mongodb的故障转移会不会无故自动发生?什么条件会触发?频繁触发可能会带来系统负载加重? Bully算法 mongodb副本集故障转移功能得益于它的选举机制.选举机制采用了Bully算法,可以很方便从分布式节点中选出主节点.一个分布式集群架构中一般