地铁译:Spark for python developers --- 搭建Spark虚拟环境2

这一段,主要是 Spark 的基本概念,以及Anaconda的基本组成。

理解Spark

Hadoop 随着数据的增长水平扩展,可以运行在普通的硬件上, 所以是低成本的. 数据密集型应用利用可扩展的分布处理框架在大规模商业集群上分析PB级的数据. Hadoop 是第一个map-reduce的开源实现. Hadoop 依赖的分布式存储框架叫做 HDFS(Hadoop Distributed File System). Hadoop 在批处理中运行map-reduce任务.Hadoop 要求在每个 map, shuffle,和reduce 处理步骤中将数据持久化到硬盘. 这些批处理工作的过载和延迟明显地影响了性能.

Spark 是一个面向大规模数据处理的快速、分布式、通用的分析计算引擎. 主要不同于Hadoop的特点在于Spark 通过数据管道的内存处理允许不同阶段共享数据. Spark 的独特之处在于允许四种不同的数据分析和处理风格. Spark能够用在:

  • Batch: 该模式用于处理大数据集典型的是执行大规模map-reduce 任务。
  • Streaming: 该模式用于近限处理流入的信息。
  • Iterative: 这种模式是机器学习算法,如梯度下降的数据访问重复以达到数据收敛。
  • Interactive: 这种模式用于数据探索,有用大数据块位于内存中,所以Spark的响应时间非常快。

下图描述了数据处理的4种方式:

Spark 有三种部署方式: 单机单节点和两种分布式集群方式Yarn(Hadoop 的分布式资源管理器)或者Mesos(Berkeley 开发的开源资源管理器,同时可用于Spark):

Spark 提供了一个Scala, Java, Python, and R的多语言接口.

Spark libraries

Spark 时一个完整的解决方案, 有很多强大的库:

  • SparkSQL: 提供 类SQL 的能力 来访问结构化数据,并交互性地探索大数据集
  • SparkMLLIB: 用于机器学习的大量算法和一个管道框架
  • Spark Streaming: 使用微型批处理和滑动窗口对进入的流数据T实现近限分析
  • Spark GraphX: 对于复杂连接的尸体和关系提供图处理和计算

PySpark实战

Spark是使用Scala实现的,整个Spark生态系统既充分利用了JVM环境也充分利用了原生的HDFS. Hadoop HDFS是Spark支持的众多数据存储之一。 Spark与其相互作用多数据源、类型和格式无关.

PySpark 不是Spark的一个Python转写,如同Jython 相对于Java。PySpark 提供了绑定Spark的集成 API,能够在所有的集群节点中通过pickle序列化充分使用Python 生态系统,更重要的是, 能够访问由Python机器学习库形成的丰富的生态系统,如Scikit-Learn 或者象Pandas那样的数据处理。

当我们着有一个Spark 程序的时候, 程序第一件必需要做的事情是创建一个SparkContext 对象,来告诉Spark如何防蚊鸡群。Python程序会创建PySparkContext。Py4J 是一个网关将Spark JVM SparkContex于python程序绑定。应用代码JVM SparkContextserializes

和闭包把他们发送给集群执行.

集群管理器分配资源,调度,运送这些闭包给集群上的 Spark workers,这需要激活 Python 虚拟机.?在每一台机器上, 管理 Spark Worker 执行器负责控制,计算,存储和缓存.

这个例子展示了 Spark driver 在本地文件系统上如何管理PySpark context 和Spark context以及如何通过集群管理器与 Spark worker完成交互。

弹性分布数据集(RDS,Resilient Distributed Dataset)

Spark 应用包含了一个驱动程序来运行用户的主函数,在集群上创建分布式数据集, 并在这些数据集上执行各种并行操作?(转换和动作 )。 Spark 应用运行在独立的进程集合, 与一个驱动程序中的一个 SparkContext 协调工作。SparkContext 将从集群管理器中分配系统资源 (主机, 内存, CPU)。

SparkContext管理执行器,执行器来管理集群上的多个worker .驱动程序中有需要运行的Spark 工作。这些工作被分拆成多个任务,提交给执行器来完成。执行器负责每台机器的计算,存储和缓存。Spark 中的核心构建块是 RDD (Resilient Distributed Dataset). 一个已选元素的数据集。分布意味着数据集可以位于集群的任何节点。弹性意味着数据集在不伤害数据计算进程的条件下可以全部或部分丢失,spark 将重新计算内存中的数据关系,例如操作 DAG (Directed Acyclic Graph) 基本上,Spark 将RDD的一个状态的内存快照放入缓存。如果一台计算机在操作中挂了, Spark 将从缓存的RDD中重建并操作DAG,从而使RDD从节点故障中恢复。

这里有两类的RDD 操作:

?? Transformations: 数据转换使用现存的RDD,并生产一个新转换后的RDD指针。一个RDD是不可变的,一旦创建,不能更改。 每次转换生成新的RDD. 数据转换的延迟计算的,只有当一个动作发生时执行。如果发生故障,转换的数据世系重建RDD

?.?? Actions: 动作是一个RDD触发了Spark job,并缠上一个值。一个动作操作引发Spark 执行数据转换操作,需要计算动作返回的RDD。动作导致操作的一个DAG。 DAG 被编译到不同阶段,每个阶段执行一系列任务。 一个任务是基础的工作单元。

这是关于RDD的有用信息:

  • RDD 从一个数据源创建,例如一个HDFS文件或一个数据库查询 .?

    有三种方法创建 RDD:?

    ∞从数据存储中读取?

    ∞ 从一个现存的RDD转换?

    ∞使用内存中的集合?

  • RDDs 的转换函数有 map 或 filter, 它们生成一个新的RDD.
  • 一个RDD上的一个动作包括 first, take, collect, 或count 将发送结果到Spark 驱动程序. Spark驱动程序是用户与Spark集群交互的客户端。

    ?

    下图描述了RDD 数据转换和动作:

理解 Anaconda

Anaconda 是由 Continuum(https://www.continuum.io/)维护的被广泛使用的Python分发包. 我们将使用 Anaconda 提供的流行的软件栈来生成我们的应用. 本书中,使用 PySpark和PyData生态系统。PyData生态系统由Continuum维护,支持并升级,并提供 Anaconda Python 分发包。Anaconda?Python分发包基本避免了python 环境的安装过程恶化从而节约了时间;我们用它与Spark对接. Anaconda 有自己的包管理工具可以替代传统的 pip install 和easy_install. Anaconda 也是完整的解决方案,包括一下有名的包如 Pandas, Scikit-Learn, Blaze, Matplotlib, and Bokeh. 通过一个简单的命令久可以升级任何已经安装的库:

`$  conda  update`

通过命令可以我们环境中已安装库的列表:

?$ conda list

??

主要组件如下:

??* Anaconda: 这是一个免费的Python分发包包含了科学,数学,工程和数据分析的200多个Python包

??* Conda: 包管理器负责安装复杂软件栈的所有依赖,不仅限于 Python ,也可以管理R和其它语言的安装进程。

??* Numba: 通过共性能函数和及时编译,提供了加速Python代码的能力。

??* Blaze: 通过统一和适配的接口来访问提供者的数据来实现大规模数据分析,包括Python 流处理, Pandas, SQLAlchemy, 和Spark.

???* Bokeh: 为巨型流数据集提供了交互数据的可视化.

????* Wakari: 允许我们在一个托管环境中分享和部署 IPython Notebooks和其它应用

??

下图展示了 Anaconda 软件栈中的部分组件:

时间: 2024-10-09 23:12:09

地铁译:Spark for python developers --- 搭建Spark虚拟环境2的相关文章

地铁译:Spark for python developers --- 搭建Spark虚拟环境1

一个多月的地铁阅读时光,阅读<Spark for python developers>电子书,不动笔墨不看书,随手在evernote中做了一下翻译,多年不习英语,自娱自乐.周末整理了一下,发现再多做一点就可基本成文了,于是开始这个地铁译系列. 本章中,我们将为开发搭建一个独立的虚拟环境,通过Spark和Anaconda提供的PyData 库为该环境补充能力. 这些库包括Pandas,Scikit-Learn, Blaze, Matplotlib, Seaborn, 和 Bokeh. 我们的操作

地铁译:Spark for python developers --- 搭建Spark虚拟环境3

在VirtualBox 上建Ubantu虚机,安装Anaconda,Java 8,Spark,IPython Notebook,以及和Hello world 齐名的wordcount 例子程序. 搭建Spark 环境 本节我们学习搭建 Spark环境: 在Ubuntu 14.04的虚拟机上创建隔离的开发环境,可以不影响任何现存的系统 安装 Spark 1.3.0 及其依赖. 安装Anaconda Python 2.7 环境包含了所需的库 例如Pandas, Scikit-Learn, Blaze

地铁译:Spark for python developers ---构建Spark批处理和流处理应用前的数据准备

使用PySpark和PyData相关库构建应用来分析社交网络中含有Spark的交互信息. 我们从GitHub收集有关Apache Spark的信息, 在Twitter上检查相关的tweets, 使用 Meetup从更广泛的开源社区得到更多Spark 相关感受. ?本章中, 我们将概览各种信息和数据源,理解他们的结构,从批处理到流处理介绍数据处理流水线,要点如下: ?+ 从批处理到流处理介绍数据处理管道, 有效的描述准备构建的应用架构. + 获取各种数据源 (GitHub, Twitter, 和M

地铁译:Spark for python developers ---Spark处理后的数据可视化

spark for python developer 一书,说实在的,质量一般,但勉强可以作为python 工程师的入门资料,至此,这一时段的地铁译结束了,开始新的阅读旅程-- 对于 Python 的图形绘制和可视化, 有大量的工具和库,和我们最相关并且有趣的是:? ? Matplotlib 是Python 绘图库的鼻祖. Matplotlib 最初7由 John Hunter 创作, 他是开源软件的支持者,建立的 Matplotlib 是学术界和数据科学界最流行的绘图库之一. Matplotl

地铁译:Spark for python developers ---Spark的数据戏法

聚焦在 Twitter 上关于Apache Spark的数据, 这些是准备用于机器学习和流式处理应用的数据. 重点是如何通过分布式网络交换代码和数据,获得 串行化, 持久化 , 调度和缓存的实战经验 . 认真使用 Spark SQL, 交互性探索结构化和半结构化数据. Spark SQL 的基础数据结构是?Spark dataframe, Spark dataframe 受到了 Python Pandas?dataframe 和R dataframe 的启发. 这是一个强大的数据结构, 有R 或

地铁译:Spark for python developers ---Spark与数据的机器学习

机器学习可以从数据中得到有用的见解. 目标是纵观Spark MLlib,采用合适的算法从数据集中生成见解.对于 Twitter的数据集, 采用非监督集群算法来区分与Apache?Spark相关的tweets . 初始输入是混合在一起的tweets. 首先提取相关特性, 然后在数据集中使用机器学习算法 , 最后评估结果和性能. ?本章重点如下: ???了解 Spark MLlib 模块及其算法,还有典型的机器学习流程 . ???? 预处理 所采集的Twitter 数据集提取相关特性, 应用非监督集

Spark 个人实战系列(1)--Spark 集群安装

前言: CDH4不带yarn和spark, 因此需要自己搭建spark集群. 这边简单描述spark集群的安装过程, 并讲述spark的standalone模式, 以及对相关的脚本进行简单的分析. spark官网: http://spark.apache.org/downloads.html *)安装和部署 环境: 172.16.1.109~172.16.1.111三台机器(对应域名为tw-node109~tw-node111), centos6.4, 已部署cdh4 目标是: 搭建一个spar

实验室中搭建Spark集群和PyCUDA开发环境

1.安装CUDA 1.1安装前工作 1.1.1选取实验器材 实验中的每台计算机均装有双系统.选择其中一台计算机作为master节点,配置有GeForce GTX 650显卡,拥有384个CUDA核心.另外两台计算机作为worker节点,一个配置有GeForce GTX 650显卡,另外一个配置有GeForce GTX 750 Ti显卡,拥有640个CUDA核心. 在每台计算机均创建hadoop用户并赋予root权限,本文所有的操作都将在hadoop用户下进行. 1.1.2安装前准备 用以下命令来

强者联盟——Python语言结合Spark框架

引言:Spark由AMPLab实验室开发,其本质是基于内存的高速迭代框架,"迭代"是机器学习最大的特点,因此很适合做机器学习. 得益于在数据科学中强大的表现,Python语言的粉丝遍布天下,现在又遇上强大的分布式内存计算框架Spark,两个领域的强者走到一起,自然能碰出更加强大的火花(Spark能够翻译为火花).因此本文主要讲述了PySpark. 本文选自<全栈数据之门>. 全栈框架 Spark由AMPLab实验室开发,其本质是基于内存的高速迭代框架,"迭代&qu