DNA sequence
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1914 Accepted Submission(s): 946
Problem Description
The twenty-first century is a biology-technology developing century. We know that a gene is made of DNA. The nucleotide bases from which DNA is built are A(adenine), C(cytosine), G(guanine), and T(thymine). Finding the longest common subsequence between DNA/Protein sequences is one of the basic problems in modern computational molecular biology. But this problem is a little different. Given several DNA sequences, you are asked to make a shortest sequence from them so that each of the given sequence is the subsequence of it.
For example, given "ACGT","ATGC","CGTT" and "CAGT", you can make a sequence in the following way. It is the shortest but may be not the only one.
Input
The first line is the test case number t. Then t test cases follow. In each case, the first line is an integer n ( 1<=n<=8 ) represents number of the DNA sequences. The following k lines contain the k sequences, one per line. Assuming that the length of any sequence is between 1 and 5.
Output
For each test case, print a line containing the length of the shortest sequence that can be made from these sequences.
Sample Input
1
4
ACGT
ATGC
CGTT
CAGT
Sample Output
8
思路:迭代加深搜索。含义:在不知道迭代深度的前提下,依次探索每次的搜索深度。
#include <cstdio> #include <cstring> #include <algorithm> #include <set> using namespace std; const int MAXN=10; struct Node{ char s[MAXN]; int top,len; }seq[MAXN]; int n,limit; int res; char buf[4]={‘A‘,‘T‘,‘C‘,‘G‘}; bool dfs(int dep) { int mark=0; int remain=0; for(int i=0;i<n;i++) { if(seq[i].top==seq[i].len) { mark++; } else { remain=max(seq[i].len-seq[i].top,remain); } } if(mark==n) { res=min(dep,res); return true; } if(remain+dep>limit) { return false;//重要剪枝 } for(int k=0;k<4;k++) { char ch=buf[k]; int vis[MAXN]={0}; bool flag=false; for(int i=0;i<n;i++) { if(seq[i].s[seq[i].top]==ch) { flag=true; seq[i].top++; vis[i]=1; } } if(flag) { if(dfs(dep+1)) { return true; } for(int i=0;i<n;i++) { if(vis[i]) { seq[i].top--; } } } } return false; } int main() { int T; scanf("%d",&T); while(T--) { limit=0; scanf("%d",&n); for(int i=0;i<n;i++) { scanf("%s",seq[i].s); seq[i].len=strlen(seq[i].s); seq[i].top=0; limit=max(limit,seq[i].len); } res=0x3f3f3f3f; while(!dfs(0)) { limit++;//迭代加深搜索 } printf("%d\n",res); } return 0; }