[转载] 使用Kettle进行数据迁移(ETL)

由于开发新的系统,需要将之前一个老的C/S应用的数据按照新的数据设计导入到新库中。此过程可能涉及到表结构不一致、大数据量(千万级,甚至上亿)等情况,包括异构数据的抽取、清洗等等工作。部分复杂的工作需要我们的DBA写代码用程序在JDBC或者Delphi中解决,而大部分稍简单的数据的迁移需要一个强大的ETL工具来解决。某日,技术经理让我找一个满足我们项目数据迁移需求的稳定、高效ETL工具。google了几把,网上大致有下列几款软件资料较多:Oracle的OWB(Oracle Warehouse Builder)、AICloudETL、Kettle等等。一一安装并尝试,最终因为Kettle资料丰富、成功案例多、可配合强大的任务调度工具来使用而选定用它。经过测试效率基本满足迁移需要。在2012年7月左右的时候写了一个简单的入门文档供项目组内部使用,现在贴出来,供有类似需求的朋友们参考。【之后我们还用Flex+Quartz开发了一个BS的类似于Kettle的数据转移工具,在我们的项目中每天晚上从一个库迁移数据到另一个库。将在之后的博文中大体讲述】一      关于Kettle

Kettle是一款国外开源的ETL工具,纯java编写,数据抽取高效稳定的数据迁移工具。Kettle中有两种脚本文件,transformation和job,transformation完成针对数据的基础转换,job则完成整个工作流程的控制。

二      本项目中的ETL需求

本项目主要有以下要求:

1、能完成ASCii编码到UTF8编码的转换。

2、稳定。

3、可高效的完成批量数据的转移。

4、能记录、查看(最好能给出分析)转移过程中失败的数据。

5、易于使用,学习成本低。

经测试,以上需求Kettle均可满足,将在之后的操作说明中提及并在最后总结。

三      操作说明3.1软件获取

在官网http://kettle.pentaho.com/下载,该软件为绿色版,解压后点击Spoon.bat运行,需要JRE环境支持。(此文档中使用4.2.0 stable版本示例)

3.2 基本操作

Kettle左侧的功能区有“主对象树”和“核心对象”两个面板。其中“核心对象”较为常用。右侧为对象的属性编辑区。可以将左侧的对象拖动到右侧编辑区。同时按键盘shift键在两个对象上画线,可连接两个对象。多个对象连接成为一个transformation。

3.3 示例一:Kettle的基本操作和简单应用

场景要求:此demo假设需抽取***.**.**.33上编码为US7ASCII的某一张表中数据提取到本地上编码为UTF-8的库中。

详细步骤:

1、双击Spoon.bat运行软件,点击“没有资源库”,进入主界面。左上角点击”文件-新建-转换“保存为demo.ktr

2、左侧选择“核心对象”面板。”在“输入”文件夹下选择“表输入”并把它拖动到右侧编辑区。

3、双击编辑区的“表输入”图标,编辑数据输入来源。点击“数据库连接”右侧的“新建”按钮,按demo背景中的要求,配置数据库参数。配置后点击“Test”,若配置有误将弹出异常提示,根据提示修正。若无误将显示如下信息:

点击“确定”和“OK”,我们为此表输入对象确定了数据库。

4、继续点击“获取SQL”查询语句,选择输入表。这里我们选择A_GB这张表。

选择输入表后,请务必勾选“允许延迟加载”复选框。(否则可能导致乱码,将在文档最后说明。)其余选项默认,点击“确定”完成表输入对象的编辑。

5、在左侧“核心对象”中的“转换”文件夹中选择“字段选择”功能,拖动到右侧编辑区。按住键盘shift同时鼠标从“表输入”为起点,“字段选择”为终点画一条连接。如图:

6、双击“字段选择”,打开编辑窗口,选择“元数据”面板,点击右侧“获取改变的字段”,将自动列出之前表输入中所有字段。

7、根据要抽取的目标表字段名(输出字段名),给每一个输入字段改成和输出字段相同的名称。同时请务必在Encoding一栏中选择输出库的编码。根据demo的背景要求,此处我们选择GBK。

8、编辑完“字段选择”后点击“确定”关闭窗口。同上,在“输出”文件夹中拖动一个“表输出”到右侧编辑区,并画连接。

9、双击“表输出”打开其编辑窗口。同“表输入”一样,按照demo背景要求,配置好本地库。

10、同“表输入”,选择输出的目标表。选择后在“Darabase fileds”面板中点击“Enter field mapping”映射输入输出关系。

11、因之前已经在“字段选择”中为每一个输入字段改名,这里点“猜一猜”,会根据字段近似度自动匹配映射关系。

映射完输入输出字段的关系,检查无误后,点击“确定”关闭窗口。

12、至此,我们最简单的一个抽取示例的转换建立完毕,点击“校验这个转换”,Kettle会校验并给出简单的报告。此处只有一个警告,经检查并不影响我们的抽取转换工作,点击“关闭”。

13、点击“运行这个转换”,选择“本地执行”,点击“启动”来执行这个转换。

14、转换的过程可以在控制台实时显示。同时“日志”的详细程度是可选的。

15、执行完毕后,控制台日志若无异常信息,说明转换成功,可以去我们本地库查看。发现确实已被导入新库,两者记录数相同且无乱码。

3.4示例二:字段合并、计算等复杂背景下的应用

场景要求:要求数据输入来自于两张表,且输出表的某字段需两张输入表的字段进行合并。并可能对某些字段进行字符串操作、日期运算、数学计算等。此示例演示字符串操作、列合并。日期运算和数学计算与此类似,不再敖述。

简略步骤:

1、基本操作同示例一,其中需引入“Replace in string”和“Modified JavaScript Value”对象。

2、表输入:使用一个简单的关连查询,查出所有要抽取的字段和需要合并的列。

3、Replace in string对象:需填写要被替换的输入字段“In Stream field”,这里我们替换APP_CN_NAME字段。是否使用正则表达式“useRegEx”选择“否”,“Search”搜索字符串假设搜索“PERFETTI VAN”,“Replace with”替换为“Replace in string替换后的内容”。“Whole word”是否整个单词和“Case sensitive”大小写敏感均选择“否”。

4、“Modified JavaScript Value”对象:此对象通过编写javaScript脚本来对记录进行高级操作。Kettle内置mozilla的rhino来运行脚本,完成对输入记录的一系列操作。

左侧有大量的字符串、日期、数学运算的库函数可以调用。这里只简单将两列合并为新字段。(若数学、日期运算较复杂,也可以使用“计算器”对象)

此demo中Javascript对象中的值为:

四      Kettle针对此项目的注意事项4.1 编码问题

项目要求能完成ASCii编码到UTF8编码的转换。资料显示Kettle默认输入、输出均使用UTF-8编码。为保证不乱码需注意:

输入:此项目的输入是ASCii,故在“表输入”编辑面板务必勾选“允许延迟转换”,便会根据数据库自身的编码读入。否则将会默认以UTF-8读入,可能导致乱码。

输出:在输出前请使用“字段选择”对象。同时在“字段选择”的“元数据”面板中设置输出编码。可以指定任意输出字符集。

4.2 效率问题

项目要求ETL工具需高效的完成批量数据的转移。查看日志发现Kettle每次输入5W条记录,经过处理再输出。经测试,100W条记录,从172.16.4.33至本地,耗时14min22s。

4.3异常信息

由于Kettle由Java编写,出错时,其异常信息也按照Java异常信息格式打印。如图某错误的日志为:

其信息是:

13.11.42 by buildguy) : org.pentaho.di.core.exception.KettleDatabaseBatchException:

2012/07/10 09:42:32 - 表输出.0 - ERROR (version 4.2.0-stable, build 15748 from 2011-09-08 13.11.42 by buildguy) : Error updating batch

2012/07/10 09:42:32 - 表输出.0 - ERROR (version 4.2.0-stable, build 15748 from 2011-09-08 13.11.42 by buildguy) : ORA-12899: 列 "SCOTT"."T_TMAAS_APP_TMXZ_APPFORM"."APP_NUM" 的值太大 (实际值: 9, 最大值: 4)

由以上异常信息可明显看出在批量更新时出错,错误在“表输出”时出现,具体原因是SCOTT用户下的T_TMAAS_APP_TMXZ_APPFORM表的APP_NUM字段的输出值太大。经检查,该字段最大长度为4,合并后向其输出的长度为9,故抛此异常。

此信息会对异常有较准确的范围描述和简单的原因分析,有利于分析。但未标明是哪一条记录导致。(由于ETL过程可能有复杂的表关联和字段处理,产生异常不一定是输入流中数据的问题,可也能是关联问题、脚本将字段变换后和输出不匹配等问题。尤其是关联后的记录经脚本处理后与输出表结构不匹配时,软件难以定位原始记录,需人工分析。)

4.4、易用性

Kettle由Java编写,在生产中可方便地与Java项目整合,配合任务调度工具可完成强大的ETL工作,使用较为广泛,参考资料丰富。

源贴地址:http://www.cnblogs.com/radio/archive/2013/04/24/3040248.html

由于开发新的系统,需要将之前一个老的C/S应用的数据按照新的数据设计导入到新库中。此过程可能涉及到表结构不一致、大数据量(千万级,甚至上亿)等情况,包括异构数据的抽取、清洗等等工作。部分复杂的工作需要我们的DBA写代码用程序在JDBC或者Delphi中解决,而大部分稍简单的数据的迁移需要一个强大的ETL工具来解决。某日,技术经理让我找一个满足我们项目数据迁移需求的稳定、高效ETL工具。google了几把,网上大致有下列几款软件资料较多:Oracle的OWB(Oracle Warehouse Builder)、AICloudETL、Kettle等等。一一安装并尝试,最终因为Kettle资料丰富、成功案例多、可配合强大的任务调度工具来使用而选定用它。经过测试效率基本满足迁移需要。在2012年7月左右的时候写了一个简单的入门文档供项目组内部使用,现在贴出来,供有类似需求的朋友们参考。【之后我们还用Flex+Quartz开发了一个BS的类似于Kettle的数据转移工具,在我们的项目中每天晚上从一个库迁移数据到另一个库。将在之后的博文中大体讲述】一      关于Kettle

Kettle是一款国外开源的ETL工具,纯java编写,数据抽取高效稳定的数据迁移工具。Kettle中有两种脚本文件,transformation和job,transformation完成针对数据的基础转换,job则完成整个工作流程的控制。

二      本项目中的ETL需求

本项目主要有以下要求:

1、能完成ASCii编码到UTF8编码的转换。

2、稳定。

3、可高效的完成批量数据的转移。

4、能记录、查看(最好能给出分析)转移过程中失败的数据。

5、易于使用,学习成本低。

经测试,以上需求Kettle均可满足,将在之后的操作说明中提及并在最后总结。

三      操作说明3.1软件获取

在官网http://kettle.pentaho.com/下载,该软件为绿色版,解压后点击Spoon.bat运行,需要JRE环境支持。(此文档中使用4.2.0 stable版本示例)

3.2 基本操作

Kettle左侧的功能区有“主对象树”和“核心对象”两个面板。其中“核心对象”较为常用。右侧为对象的属性编辑区。可以将左侧的对象拖动到右侧编辑区。同时按键盘shift键在两个对象上画线,可连接两个对象。多个对象连接成为一个transformation。

3.3 示例一:Kettle的基本操作和简单应用

场景要求:此demo假设需抽取***.**.**.33上编码为US7ASCII的某一张表中数据提取到本地上编码为UTF-8的库中。

详细步骤:

1、双击Spoon.bat运行软件,点击“没有资源库”,进入主界面。左上角点击”文件-新建-转换“保存为demo.ktr

2、左侧选择“核心对象”面板。”在“输入”文件夹下选择“表输入”并把它拖动到右侧编辑区。

3、双击编辑区的“表输入”图标,编辑数据输入来源。点击“数据库连接”右侧的“新建”按钮,按demo背景中的要求,配置数据库参数。配置后点击“Test”,若配置有误将弹出异常提示,根据提示修正。若无误将显示如下信息:

点击“确定”和“OK”,我们为此表输入对象确定了数据库。

4、继续点击“获取SQL”查询语句,选择输入表。这里我们选择A_GB这张表。

选择输入表后,请务必勾选“允许延迟加载”复选框。(否则可能导致乱码,将在文档最后说明。)其余选项默认,点击“确定”完成表输入对象的编辑。

5、在左侧“核心对象”中的“转换”文件夹中选择“字段选择”功能,拖动到右侧编辑区。按住键盘shift同时鼠标从“表输入”为起点,“字段选择”为终点画一条连接。如图:

6、双击“字段选择”,打开编辑窗口,选择“元数据”面板,点击右侧“获取改变的字段”,将自动列出之前表输入中所有字段。

7、根据要抽取的目标表字段名(输出字段名),给每一个输入字段改成和输出字段相同的名称。同时请务必在Encoding一栏中选择输出库的编码。根据demo的背景要求,此处我们选择GBK。

8、编辑完“字段选择”后点击“确定”关闭窗口。同上,在“输出”文件夹中拖动一个“表输出”到右侧编辑区,并画连接。

9、双击“表输出”打开其编辑窗口。同“表输入”一样,按照demo背景要求,配置好本地库。

10、同“表输入”,选择输出的目标表。选择后在“Darabase fileds”面板中点击“Enter field mapping”映射输入输出关系。

11、因之前已经在“字段选择”中为每一个输入字段改名,这里点“猜一猜”,会根据字段近似度自动匹配映射关系。

映射完输入输出字段的关系,检查无误后,点击“确定”关闭窗口。

12、至此,我们最简单的一个抽取示例的转换建立完毕,点击“校验这个转换”,Kettle会校验并给出简单的报告。此处只有一个警告,经检查并不影响我们的抽取转换工作,点击“关闭”。

13、点击“运行这个转换”,选择“本地执行”,点击“启动”来执行这个转换。

14、转换的过程可以在控制台实时显示。同时“日志”的详细程度是可选的。

15、执行完毕后,控制台日志若无异常信息,说明转换成功,可以去我们本地库查看。发现确实已被导入新库,两者记录数相同且无乱码。

3.4示例二:字段合并、计算等复杂背景下的应用

场景要求:要求数据输入来自于两张表,且输出表的某字段需两张输入表的字段进行合并。并可能对某些字段进行字符串操作、日期运算、数学计算等。此示例演示字符串操作、列合并。日期运算和数学计算与此类似,不再敖述。

简略步骤:

1、基本操作同示例一,其中需引入“Replace in string”和“Modified JavaScript Value”对象。

2、表输入:使用一个简单的关连查询,查出所有要抽取的字段和需要合并的列。

3、Replace in string对象:需填写要被替换的输入字段“In Stream field”,这里我们替换APP_CN_NAME字段。是否使用正则表达式“useRegEx”选择“否”,“Search”搜索字符串假设搜索“PERFETTI VAN”,“Replace with”替换为“Replace in string替换后的内容”。“Whole word”是否整个单词和“Case sensitive”大小写敏感均选择“否”。

4、“Modified JavaScript Value”对象:此对象通过编写javaScript脚本来对记录进行高级操作。Kettle内置mozilla的rhino来运行脚本,完成对输入记录的一系列操作。

左侧有大量的字符串、日期、数学运算的库函数可以调用。这里只简单将两列合并为新字段。(若数学、日期运算较复杂,也可以使用“计算器”对象)

此demo中Javascript对象中的值为:

四      Kettle针对此项目的注意事项4.1 编码问题

项目要求能完成ASCii编码到UTF8编码的转换。资料显示Kettle默认输入、输出均使用UTF-8编码。为保证不乱码需注意:

输入:此项目的输入是ASCii,故在“表输入”编辑面板务必勾选“允许延迟转换”,便会根据数据库自身的编码读入。否则将会默认以UTF-8读入,可能导致乱码。

输出:在输出前请使用“字段选择”对象。同时在“字段选择”的“元数据”面板中设置输出编码。可以指定任意输出字符集。

4.2 效率问题

项目要求ETL工具需高效的完成批量数据的转移。查看日志发现Kettle每次输入5W条记录,经过处理再输出。经测试,100W条记录,从172.16.4.33至本地,耗时14min22s。

4.3异常信息

由于Kettle由Java编写,出错时,其异常信息也按照Java异常信息格式打印。如图某错误的日志为:

其信息是:

13.11.42 by buildguy) : org.pentaho.di.core.exception.KettleDatabaseBatchException:

2012/07/10 09:42:32 - 表输出.0 - ERROR (version 4.2.0-stable, build 15748 from 2011-09-08 13.11.42 by buildguy) : Error updating batch

2012/07/10 09:42:32 - 表输出.0 - ERROR (version 4.2.0-stable, build 15748 from 2011-09-08 13.11.42 by buildguy) : ORA-12899: 列 "SCOTT"."T_TMAAS_APP_TMXZ_APPFORM"."APP_NUM" 的值太大 (实际值: 9, 最大值: 4)

由以上异常信息可明显看出在批量更新时出错,错误在“表输出”时出现,具体原因是SCOTT用户下的T_TMAAS_APP_TMXZ_APPFORM表的APP_NUM字段的输出值太大。经检查,该字段最大长度为4,合并后向其输出的长度为9,故抛此异常。

此信息会对异常有较准确的范围描述和简单的原因分析,有利于分析。但未标明是哪一条记录导致。(由于ETL过程可能有复杂的表关联和字段处理,产生异常不一定是输入流中数据的问题,可也能是关联问题、脚本将字段变换后和输出不匹配等问题。尤其是关联后的记录经脚本处理后与输出表结构不匹配时,软件难以定位原始记录,需人工分析。)

4.4、易用性

Kettle由Java编写,在生产中可方便地与Java项目整合,配合任务调度工具可完成强大的ETL工作,使用较为广泛,参考资料丰富。

源贴地址:http://www.cnblogs.com/radio/archive/2013/04/24/3040248.html

时间: 2024-10-27 15:07:53

[转载] 使用Kettle进行数据迁移(ETL)的相关文章

数据迁移实战:基于Kettle的Mysql到DB2的数据迁移

From:https://my.oschina.net/simpleton/blog/525675 一.什么是ETL ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract).转换(transform).加载(load)至目的端的过程.ETL一词较常用在数据仓库,但其对象并不限于数据仓库. 二.Kettle简单说明 Kettle是一款国外开源的ETL工具,纯java编写,可以在Window.Linux.Unix上运行,数据抽取高效稳定

利用Kettle进行SQLServer与Oracle之间的数据迁移实践

Kettle简介 Kettle(网地址为http://kettle.pentaho.org/)是一款国外开源的ETL工具,纯java编写,可以在Windows.Linux.Unix上运行,数据抽取高效稳定. Kettle 中文名称叫水壶,该项目的主程序员MATT 希望把各种数据放到一个壶里,然后以一种指定的格式流出.Kettle中有两种脚本文件,transformation和job,transformation完成针对数据的基础转换,job则完成整个工作流的控制. Windows环境下的安装与配

kettle 数据迁移 (转)

最近在公司搞一个项目重构迁移问题,旧项目一直在线上跑,重构的项目则还没上线.重构之后数据库表结构,字段,类型等都有变化,而且重构的数据库由oracl改为mysql.这样就设计到数据迁移问题,别人推荐下用了kettle.由于资料比较少,刚开始搞了半天没成功过一次.现在终于有点开窍了,记录下以备后用,同时给用到的同学一点帮助也好,现在还是刚用的第二天,所以写的太浅显,望莫耻笑. 1.数据类型转换 由于大多数的数据结构都差不多,所以大多转换就如下图所示: 如果有字段变化在在“字段选择”中做映射,如我原

基于内容的数据迁移计划和方案--转载

越来越多的企业用内容管理系统来管理电子发票,电子文档,人力资源等结构化或非结构化数据内容,而且把这些业务外包到第三方的 IT 公司.外包公司的更换,或者现有内容管理系统不能满足业务增长,性能,兼容性等方面的需要,企业计划采用业务管理,性能以及兼容性更好的系统. 还有的企业目前根本没有采用内容管理系统,所有的发票,电子文档,人力资源信息都是以纸质文字或者档案的形式管理维护,为了提高企业的运营效率,这些企业计划采用内容管理解决方案. 如何在不干扰现有业务的基础上把这些内容数据从一个系统迁移到另外一个

kettle 数据迁移

最近在公司搞一个项目重构迁移问题,旧项目一直在线上跑,重构的项目则还没上线.重构之后数据库表结构,字段,类型等都有变化,而且重构的数据库由oracl改为mysql.这样就设计到数据迁移问题,别人推荐下用了kettle.由于资料比较少,刚开始搞了半天没成功过一次.现在终于有点开窍了,记录下以备后用,同时给用到的同学一点帮助也好,现在还是刚用的第二天,所以写的太浅显,望莫耻笑. 1.数据类型转换 由于大多数的数据结构都差不多,所以大多转换就如下图所示: 如果有字段变化在在“字段选择”中做映射,如我原

数据迁移经验总结——亿级别多表异构的数据迁移工作

由于系统改版,最近三个月在做数据迁移工作,由于业务的特殊,基本将数据迁移所能踩的坑都踩了一遍,决定好好做个总结. 迁移类型--新老系统表结构变化较大的历史数据 一.核心问题 1.新老表结构变化极大.新表是以deliver为核心,另外还涉及仓储系统的一张表,订单系统的4张表,并按照新的逻辑映射关系进行迁移. 2.增量数据迁移.在全量数据迁移时必然会有新的数据,这些数据应该实时进行迁移 3.亿级别数据性能.效率的考虑.由于订单业务非常重要,数据迁移带来的qps对数据库的压力非常大,需要不断测试迭代找

HBase跨版本数据迁移总结

某客户大数据测试场景为:Solr类似画像的数据查出用户标签--通过这些标签在HBase查询详细信息.以上测试功能以及性能. 其中HBase的数据量为500G,Solr约5T.数据均需要从对方的集群人工迁移到我们自己搭建的集群.由于Solr没有在我们集群中集成,优先开始做HBase的数据迁移,以下总结了HBase使用以及数据迁移遇到的各种问题以及解决方法. 一.迁移过程遇到问题以及解决 客户HBase版本:Version 0.94.15腾讯大数据套件HBase版本:Version 1.2.1客户私

闲来无事,编写一个数据迁移小工具

一.前言 生命不息,折腾不止.近期公司有数据迁移的计划,从Sqlserver迁移到mysql,虽说网上有很多数据迁移方案,但闲着也是闲着,就自己整一个,权当做是练练手了 二.解决思路 整个迁移过程类似于ETL,将数据从来源端经过抽取(extract).转换(transform).加载(load)至目的端.读取并转换sqlserver库数据,将数据解析为csv文件,载入文件到mysql.流程如下: 抽取.转换此过程主要是处理源数据库与目标数据库表字段的映射关系,为了保证程序的通用性,通过配置文件映

【源】从零自学Hadoop(16):Hive数据导入导出,集群数据迁移上

阅读目录 序 导入文件到Hive 将其他表的查询结果导入表 动态分区插入 将SQL语句的值插入到表中 模拟数据文件下载 系列索引 本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 文章是哥(mephisto)写的,SourceLink 序 上一篇,我们介绍了Hive的表操作做了简单的描述和实践.在实际使用中,可能会存在数据的导入导出,虽然可以使用sqoop等工具进行关系型数据导入导出操作,但有的时候只需要很简便的方式进行导入导出即可   下面我们开始