Unique Paths I,II

题目来自于:https://leetcode.com/problems/unique-paths/

:https://leetcode.com/problems/unique-paths-ii/

A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

这道题目就是典型的动态规划问题。之所以会写博客也是因为被网上的另外一种算法吸引了。

典型的解法记住空间复杂度要在O(n)

class Solution {
public:
    int uniquePaths(int m, int n) {
       vector<int> paths(n,1);
       for(int i=1;i<m;i++)
         for(int j=1;j<n;j++)
            paths[j]+=paths[j-1];
       return paths[n-1];
    }
};

第二种是采用排列组合的方法来解答的

我们从左上角走到右下角一共要(m-1)+(n-1)步而其中我们可以选择(m-1)+(n-1)任意的(m-1)步向右,或者是(n-1)步向下。所以问题的答案就是Ian单的

这种解法的缺点是可能在m,n取较大的数值时候无法储存。所以此处我们采用long int,

class Solution {
public:
    int uniquePaths(int m, int n) {// (m-1 + n-1)! / ((m-1)! * (n-1)!)
    int large = max(m,n) -1;
    int small = min(m,n) -1;
    if (large == 0 || small == 0) return 1;
    long int numerator = 1, denominator = 1;
    for (int i=1; i<=small; ++i){
        numerator *= large + i;
        denominator *= i;
    }
    return numerator/denominator;
    }
};

Unique Paths II

Total Accepted: 35700 Total
Submissions: 127653My Submissions

Question
 Solution

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively
in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

这里只是加了障碍物而已,在障碍物的位子是0,

还有初始化只能初始化第一个位子即起点,如果起点不是障碍物则为1,否则是0;

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
       vector<int> paths(obstacleGrid[0].size(),0);
       paths[0]=!obstacleGrid[0][0];
       for(int i=0;i<obstacleGrid.size();++i)
           for(int j=0;j<obstacleGrid[0].size();++j)
               if(obstacleGrid[i][j]==1)
                  paths[j]=0;
                else if(j-1>=0)
                   paths[j]+=paths[j-1];
       return paths[obstacleGrid[0].size()-1];
    }
};
时间: 2024-10-15 12:57:30

Unique Paths I,II的相关文章

Unique Paths I&amp;&amp;II

Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked

62. Unique Paths i &amp; ii

62. Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (mar

LeetCode: Unique Paths I &amp; II

Title: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finis

LeetCode 62, 63 Unique Paths I+II

62. Unique Paths 空间可以按行优化为 O(n),也可以按列优化为O(m). class Solution { public: int uniquePaths(int m, int n) { int dp[m][n]={0}; dp[0][0]=1; for (int i=0;i<m;++i){ for (int j=0;j<n;++j){ if (i==0&&j==0) continue; dp[i][j]=0; if (j-1>=0) dp[i][j]

&lt;LeetCode OJ&gt; 63. Unique Paths II

63. Unique Paths II My Submissions Question Total Accepted: 55136 Total Submissions: 191949 Difficulty: Medium Follow up for "Unique Paths":紧接着上一题"唯一路劲",现在考虑有一些障碍在网格中,无法到达,请重新计算到达目的地的路线数目 Now consider if some obstacles are added to the

LeetCode --- 63. Unique Paths II

题目链接:Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How many unique paths would there be? An obstacle and empty space is marked as 1 and 0 respectively in the grid. For example, There is one

[LeetCode] Unique Paths &amp;&amp; Unique Paths II &amp;&amp; Minimum Path Sum (动态规划之 Matrix DP )

Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to rea

61. Unique Paths &amp;&amp; Unique Paths II

Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked

Unique Paths II

这题在Unique Paths的基础上增加了一些obstacle的位置,应该说增加的难度不大,但是写的时候对细节的要求多了很多,比如,第一列的初始化会受到之前行的第一列的结果的制约.另外对第一行的初始化,也要分if else赋值.很容易出现初始化不正确的情况. 代码: class Solution { public: int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { if(obstacleG