改进的二值图像像素标记算法及程序实现(含代码)

  笔者实现了一个论文里面的算法程序,论文(可以网上搜索到,实在搜不到可以联系笔者或留下邮箱发给你)讲解比较到位,按照作者的思路写完了代码,测试效果很好,在此分享一下算法思路及实现代码。

  此算法优于一般的像素标记算法,只需扫描一遍就可以得出图像边界、面积等等,大大减少了计算量。

算法描述:

  一、全图扫描

    对二值图像全图扫描,左到右,上到下,一遇到像素边界就进行判断。像素边界指当前像素灰度为1,其他8领域至少有一个灰度值为0。

    1.先依次判断当前像素(i,j)的左侧、左上侧、上侧像素和右上侧像素是否被已标记,一旦遇到已标记则说明当前像素(i,j)和这个已标记像素属于同一个目标,赋予Edge[i][j]相同的标记值,结束本像素标记,如四个像素都未标记则进入第二步。

    2.当前像素右移一部,即变为(i,j+1),进入一子循环,每次循环判断当前像素右上侧像素是否已标记。如已标记则赋予Edge[i][j]相同的标记值并跳出循环结束,如当前像素右上侧像素未标记则右移一位像素继续判断,直到到达这一行像素的右侧边界,跳出循环说明像素(i,j)属于新目标。则原来最大目标标记值temp加1并赋予Edge[i][j],结束本像素标记。

    这一大步需要注意可能会有同一类别被分到不同目标,需要全图扫描时进行判断,主要是凹形。

  二、扫描后处理

    1.归类。前面记录的等价标记数组只是记录了两两等价情况,而实际可能超过两个,如三个等价。这里需要补充的是,Same2数组是一个tempX1的数组,第几行就对应第几个目标处理情况。依次扫描Same1数组每一行,在Same2中修改类别值,保证统一类的值归为一类。

    2.标以正确的目标值。经过上一步,属于同一目标的像素标记值都已归为一类,有几类就有几个带下凹的目标,再加上0的个数(不带下凹的目标个数)就是实际目标总数。顺序扫描Same2,遇到0说明该行号表示的目标位没有下凹的,result+1赋予Same3的同一行,遇到非零数字,则看它是否第一次出现,如果第一次出现,result+1并赋予Same3同一行,如Same2这一行的值不是第一次出现,则把前面具有相同数字那一行在Same3中同行的值赋予Same3的这一行,直到检测完Same2。最后在Same3的最后数字表示的就是目标数。

    3.根据得到目标数进行目标划分,整个图像就被分到了几个目标值。得到的目标值可以统计目标数目、实现面积、周长和质心等特征值。

程序代码:

  

  1 //改进的像素标记算法实现代码及注释
  2 //作者用这个算法来绘制目标外接矩形用的
  3 //返回找到图像目标处理凹形数目,参数frame是原始二值图像,num为处理前凹形找到目标数目,s和e分别表示绘制矩形的开始点和结束点
  4 int pixelFlag(cv::Mat &frame,int &num,vector<Point2f> &s,vector<Point2f> &e)//返回个数
  5 {
  6     //frame.
  7     int kind=0,kindEnd=0,kindResult=0;//归类类别
  8     vector<int> same1[2];//可疑边界目标
  9
 10     int edge[frame.rows][frame.cols];//表明边界属于哪个类
 11     memset(edge,0,sizeof(edge));
 12     //qDebug()<<frame.channels();
 13     //扫描每个像素判断
 14     for(int i=1;i<frame.rows-1;i++)
 15          for(int j=1;j<frame.cols-1;j++)
 16         {
 17             if((frame.at<uchar>(i,j)!=0)&&(!frame.at<uchar>(i-1,j)||!frame.at<uchar>(i-1,j-1)||!frame.at<uchar>(i-1,j+1)
 18                                       ||!frame.at<uchar>(i,j-1)||!frame.at<uchar>(i,j+1)||!frame.at<uchar>(i+1,j-1)
 19                                       ||!frame.at<uchar>(i+1,j)||!frame.at<uchar>(i+1,j+1)))//判断边界点
 20             {
 21                 if(edge[i][j-1])//判断是否紧邻已被标物体  左
 22                 {
 23                     edge[i][j]=edge[i][j-1];
 24                 }
 25                 else
 26                     if(edge[i-1][j-1])//左上
 27                     {
 28                         edge[i][j]=edge[i-1][j-1];
 29                     }
 30                     else
 31                         if(edge[i-1][j])//上
 32                         {
 33                             edge[i][j]=edge[i-1][j];
 34                         }else
 35                             if(edge[i-1][j+1])//右上
 36                             {
 37                                 edge[i][j]=edge[i-1][j+1];
 38                             }else
 39                             {
 40                                 int f=0;
 41                                 while(frame.at<uchar>(i,j+f)&&((j+f)<frame.cols-1))//右移判断
 42                                 {
 43                                     if(edge[i-1][j+f+1])
 44                                     {
 45                                         edge[i][j]=edge[i-1][j+f+1];
 46                                         break;
 47                                     }
 48                                     else
 49                                     {
 50                                         f++;
 51                                     }
 52                                 }
 53                                 if(!frame.at<uchar>(i,j+f))//未找到处理
 54                                 {
 55                                     kind++;
 56                                     edge[i][j]=kind;
 57
 58                                 }
 59                             }
 60                 if(edge[i][j]&&edge[i-1][j+1])//如果当前点和右上不在一个类别就记录
 61                 {
 62                     if(edge[i][j]!=edge[i-1][j+1])
 63                     {
 64                         same1[0].push_back(edge[i][j]);
 65                         same1[1].push_back(edge[i-1][j+1]);
 66                     }
 67                 }
 68
 69
 70
 71             }
 72         }
 73
 74     //处理扫描后的结果
 75     int same2[kind];memset(same2,0,sizeof(same2));
 76     int sameEnd[kind];memset(sameEnd,0,sizeof(sameEnd));
 77     //QDebug debug;
 78     if(!same1[0].empty())
 79     {
 80         for(uint i=0;i<same1[0].size();i++)
 81         {
 82             if((!same2[same1[0][i]-1])&&(!same2[same1[1][i]-1]))//如果都没有处理,种类加1
 83             {
 84                 kindEnd++;
 85                 same2[same1[0][i]-1]=kindEnd;
 86                 same2[same1[1][i]-1]=kindEnd;
 87             }else
 88                 if(same2[same1[0][i]-1]&&same2[same1[1][i]-1])
 89                 {
 90                     same2[same1[0][i]-1]=same2[same1[1][i]-1];
 91
 92                 }else
 93                     if(!same2[same1[0][i]-1]&&same2[same1[1][i]-1])
 94                     {
 95                         same2[same1[0][i]-1]=same2[same1[1][i]-1];
 96                     }else if(same2[same1[0][i]-1]&&!same2[same1[1][i]-1])
 97                     {
 98                         same2[same1[1][i]-1]=same2[same1[0][i]-1];
 99                     }
100
101         }
102     }
103
104     for(int i=0;i<kind;i++)//复制到sameend
105     {
106
107         if(!same2[i])
108         {
109             kindResult++;
110             sameEnd[i]=kindResult;
111         }
112         else
113             //if(same2)
114             {
115                 int j=0;
116                 while(j<i)
117                 {
118                     if(same2[j]==same2[i])
119                     {
120                         break;
121                     }
122                     j++;
123                 }
124                 if(j<i)
125                 {
126                     sameEnd[i]=sameEnd[j];
127                 }else
128                 {
129                     kindResult++;
130                     sameEnd[i]=kindResult;
131                 }
132
133             }
134     }
135     num=kind;
136     //对边界进行处理
137     for(int i=1;i<frame.rows-1;i++)
138         for(int j=1;j<frame.cols-1;j++)
139         {
140             if(edge[i][j])
141             {
142                 edge[i][j]=sameEnd[edge[i][j]-1];
143             }
144         }
145     for(int i=0;i<kindResult;i++)
146     {
147         s.push_back(Point2f(1000,1000));
148         e.push_back(Point2f(0,0));
149     }
150     for(int i=1;i<frame.rows-1;i++)//求边界对角点
151         for(int j=1;j<frame.cols-1;j++)
152         {
153             if(edge[i][j])
154             {
155                 if(s[edge[i][j]-1].y>i)
156                 {
157                     s[edge[i][j]-1].y=i;
158                 }
159                 if(s[edge[i][j]-1].x>j)
160                 {
161                     s[edge[i][j]-1].x=j;
162                 }
163                 if(e[edge[i][j]-1].y<i)

164                 {
165                     e[edge[i][j]-1].y=i;
166                 }
167
168                 if(e[edge[i][j]-1].x<j)
169                 {
170                     e[edge[i][j]-1].x=j;
171                 }
172             }
173         }
174      return kindResult;
175
176
177
178 }

效果如下:

  

共享园友,学习共勉!

改进的二值图像像素标记算法及程序实现(含代码)

时间: 2024-08-20 15:56:36

改进的二值图像像素标记算法及程序实现(含代码)的相关文章

二值图像连通域标记算法与代码

这里列举二值图像连通域标记算法包括直接扫描标记算法和二值图像连通域标记快速算法 一.直接扫描标记算法把连续区域作同一个标记,常见的四邻域标记算法和八邻域标记算法. 1.  四邻域标记算法: 1)   判断此点四邻域中的最左,最上有没有点,如果都没有点,则表示一个新的区域的开始. 2)   如果此点四邻域中的最左有点,最上没有点,则标记此点为最左点的值:如果此点四邻域中的最左没有点,最上有点,则标记此点为最上点的值. 3)   如果此点四邻域中的最左有点,最上都有点,则标记此点为这两个中的最小的标

二值图像连通域标记算法

二值图像连通域标记算法 八邻域标记算法: 1)   判断此点八邻域中的最左,左上,最上,上右点的情况.如果都没有点,则表示一个新的区域的开始. 2)   如果此点八邻域中的最左有点,上右都有点,则标记此点为这两个中的最小的标记点,并修改大标记为小标记. 3)   如果此点八邻域中的左上有点,上右都有点,则标记此点为这两个中的最小的标记点,并修改大标记为小标记. 4)   否则按照最左,左上,最上,上右的顺序,标记此点为四个中的一个. BOOL CImageColorProcess::Connec

实现基于C语言的二值图像连通域标记算法

实现基于C语言的二值图像连通域标记算法 1 #include <stdio.h> 2 #include <stdarg.h> 3 #include <stddef.h> 4 #include <stdlib.h> 5 #include <stdint.h> 6 #include <math.h> 7 8 #define CONNECTIVITY4 4 9 #define CONNECTIVITY8 8 10 #define STACK

[Java并发编程实战]构建一个高效可复用缓存程序(含代码)

[Java并发编程实战]构建一个高效可复用缓存程序(含代码) 原文地址:https://www.cnblogs.com/chengpeng15/p/9915800.html

连通域标记算法并行化(MPI+OpenMP)

1 背景 图像连通域标记算法是从一幅栅格图像(通常为二值图像)中,将互相邻接(4邻接或8邻接)的具有非背景值的像素集合提取出来,为不同的连通域填入数字标记,并且统计连通域的数目.通过对栅格图像中进行连通域标记,可用于静态地分析各连通域斑块的分布,或动态地分析这些斑块随时间的集聚或离散,是图像处理非常基础的算法.目前常用的连通域标记算法有1)扫描法(二次扫描法.单向反复扫描法等).2)线标记法.3)区域增长法.二次扫描法由于简单通用而被广泛使用! 图1 连通域标记示意图 随着所要处理的数据量越来越

图像连通域标记算法研究

把之前一篇记录过的日志贴过来 图像连通域标记算法研究 ConnectedComponent Labeling 最近在研究一篇复杂下背景文字检测的论文. “Detecting Text in Natural Scenes with Stroke Width Transform ” CPVR 2010的文章,它主要探讨利用文字内部笔画宽度一致作为主要线索来检测文字的一个新奇的算法,当然,我不是想讨论文字检测,论文算法实施的过程中有一步涉及到图像连通域标记算法,在这里我遇到了一些问题,查阅了一些相关文

OpenCV:二值图像连通区域分析与标记算法实现

编译环境: 操作系统:Win8.1  64位 IDE平台:Visual Studio 2013 Ultimate OpenCV:2.4.8 一.连通域 在图像中,最小的单位是像素,每个像素周围有8个邻接像素,常见的邻接关系有2种:4邻接与8邻接.4邻接一共4个点,即上下左右,如下左图所示.8邻接的点一共有8个,包括了对角线位置的点,如下右图所示.         如果像素点A与B邻接,我们称A与B连通,于是我们不加证明的有如下的结论: 如果A与B连通,B与C连通,则A与C连通. 在视觉上看来,彼

二值图像连通域标记

来源:http://www.cnblogs.com/ronny/p/img_aly_01.html 一.前言 二值图像,顾名思义就是图像的亮度值只有两个状态:黑(0)和白(255).二值图像在图像分析与识别中有着举足轻重的地位,因为其模式简单,对像素在空间上的关系有着极强的表现力.在实际应用中,很多图像的分析最终都转换为二值图像的分析,比如:医学图像分析.前景检测.字符识别,形状识别.二值化+数学形态学能解决很多计算机识别工程中目标提取的问题. 二值图像分析最重要的方法就是连通区域标记,它是所有

转-二值图像连通域标记

转自:图像分析:二值图像连通域标记 一.前言 二值图像,顾名思义就是图像的亮度值只有两个状态:黑(0)和白(255).二值图像在图像分析与识别中有着举足轻重的地位,因为其模式简单,对像素在空间上的关系有着极强的表现力.在实际应用中,很多图像的分析最终都转换为二值图像的分析,比如:医学图像分析.前景检测.字符识别,形状识别.二值化+数学形态学能解决很多计算机识别工程中目标提取的问题. 二值图像分析最重要的方法就是连通区域标记,它是所有二值图像分析的基础,它通过对二值图像中白色像素(目标)的标记,让