matlab练习程序(克莱姆法则解方程)

《线性代数》同济第五版第一章最后一节的内容,我都差点忘记了,在这里写个简单的例子记录一下。

matlab代码如下:

clear all;
close all;
clc;

% A*x = b 求解x
% 1*x1+2*x2 = 5
% 3*x1+4*x2 = 6
A=[1 2;
   3 4];

b=[5;
   6];

D = det(A);
D1 = det([b A(:,2)]);
D2 = det([A(:,1) b]);

x1 = D1/D;
x2 = D2/D;

原文地址:https://www.cnblogs.com/tiandsp/p/11723268.html

时间: 2025-01-08 19:52:43

matlab练习程序(克莱姆法则解方程)的相关文章

【转】小波与小波包、小波包分解与信号重构、小波包能量特征提取 暨 小波包分解后实现按频率大小分布重新排列(Matlab 程序详解)

转:https://blog.csdn.net/cqfdcw/article/details/84995904 小波与小波包.小波包分解与信号重构.小波包能量特征提取   (Matlab 程序详解) -----暨 小波包分解后解决频率大小分布重新排列问题 本人当前对小波理解不是很深入,通过翻阅网络他人博客,进行汇总总结,重新调试Matlab代码,实现对小波与小波包.小波包分解与信号重构.小波包能量特征提取,供大家参考,后续将继续更新! 本人在分析信号的过程中发现,按照网上所述的小波包分解方法理解

1402 解方程

1402 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 你曾因解麻烦的二元一次方程而烦恼吗?(其实很简单)我们现在用程序来模拟一下吧. 输入描述 Input Description 输入有两行,分别是两个一次方程,保证输入满足二元一次方程的定义:会出现小数,有效数字不会超过5位:保证有且只有一个解.未知数不一定是x和y.输出保留到小数点后10位.数据不超过maxlongint.不会出现括号.除

用Python解方程

我们先从简单的来 例题1: 这是北师大版小学六年级上册课本95页的一道解方程练习题: 大家可以先口算一下,这道题里面的x的值为200 接下来我们用python来实现,代码如下,每一句代码后面都写有解释语: 1 import sympy # 引入解方程的专业模块sympy 2 x = sympy.symbols("x") # 申明未知数"x" 3 a = sympy.solve([x+(1/5)*x-240],[x]) # 写入需要解的方程体 4 print(a) #

用python解方程和微积分

用python解方程: from sympy import * x = Symbol('x')  y = Symbol('y') print solve([2* x - y -3,3* x + y -7],[x, y]) 2. 求极限: 代码中的oo就代表无穷. from sympy import * n = Symbol('n') s = ((n+3)/(n+2))**n print limit(s, n, oo) 3. 求定积分: integrate函数用于积分问题. from sympy 

NOIP201410解方程(C++)

NOIP201410解方程 难度级别:A: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 已知多项式方程: a0+a1*x+a2*x^2+a3*x^3+-+an*x^n=0 求这个方程在[1, m]内的整数解(n 和 m 均为正整数). 输入 输入共 n+2 行.第一行包含 2 个整数 n.m,每两个整数之间用一个空格隔开.接下来的 n+1 行每行包含一个整数,依次为a0,a1,a2-an.  输出 第一行输出方程在[1, m]内的整数解

codevs3732==洛谷 解方程P2312 解方程

P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次

HDU 4793 Collision --解方程

题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,vy),硬币向圆盘撞过去,碰到圆盘后会以相反方向相同速度回来(好像有点违背物理规律啊,但是题目是这样,没办法).问硬币某一部分在圆形区域内的总时间. 解法: 解方程,求 (x+vx*t,y+vy*t) 代入圆形区域方程是否有解,如果没解,说明硬币运动轨迹与圆形区域都不相交,答案为0 如果有解,再看代入圆盘有

matlab练习程序(生成黑白网格)

提供了两种生成方法,一个是自己编程实现,比较灵活:另一个是调用系统的checkerboard函数,似乎只能生成8*8网格. 至于用途,也许可以用来下国际象棋. 自己函数生成: 系统函数生成: 代码如下: clear all;close all;clc h=256; w=256; n=8; img=zeros(h,w); flag=1; for y=1:h for x=1:w if flag>0 img(y,x)=255; end if mod(x,int8(w/n))==0 flag=-flag

【NOIP之旅】NOIP2014 day2 T3 解方程

3.解方程 (equation.cpp/c/pas) [问题描述] 已知多项式方程: 求这个方程在[1, m]内的整数解(n和m均为正整数).   [输入] 输入文件名为equation.in. 输入共n+2行. 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1,a2,……,an. [输出] 输出文件名为equation.out. 第一行输出方程在[1, m]内的整数解的个数. 接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,