没有什么算法的题做起来真不适应,这道题深深讽刺了我想用栈维护匹配括号个数的想法;
递归解决就行了;
时刻注意函数返回值是什么,边界条件是什么;
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn=1e5+10; typedef double dd; typedef long long ll; ll n; ll a[maxn]; ll id[maxn]; ll f[maxn],g[maxn]; ll b1[maxn],b2[maxn]; int len; ll query_front(int x) { ll ans=0; for(;x;x-=x&(-x)) ans=max(b1[x],ans); return ans; } ll query_back(int x) { ll ans=0; for(;x;x-=x&(-x)) ans=max(b2[x],ans); return ans; } void add_front(int x,ll y) { for(;x<=len;x+=x&(-x)) b1[x]=max(b1[x],y); } void add_back(int x,ll y) { for(;x<=len;x+=x&(-x)) b2[x]=max(b2[x],y); } dd ans; int qw[maxn]; int main() { scanf("%lld",&n); for(int i=1;i<=n;i++) { scanf("%lld",&a[i]); id[i]=a[i]; } sort(id+1,id+n+1); len=unique(id+1,id+n+1)-id-1; for(int i=1;i<=n;i++) qw[i]=lower_bound(id+1,id+len+1,a[i])-id; for(int i=1;i<=n;i++) { f[i]=query_front(qw[i]-1)+a[i]; g[n-i+1]=query_back(qw[n-i+1]-1)+a[n-i+1]; add_front(qw[i],f[i]); add_back(qw[n-i+1],g[n-i+1]); } for(int i=1;i<=n;i++) { ans=max(ans,max((dd)f[i],((dd)f[i]+(dd)g[i]-(dd)a[i])/2.0)); } printf("%.3lf",ans); return 0; }
原文地址:https://www.cnblogs.com/WHFF521/p/11730078.html
时间: 2024-11-05 03:39:11