[noip2014]P2312 解方程

P2312 解方程

其实这道题就是求一个1元n次方程在区间[1, m]上的整数解。

我们枚举[1, m]上的所有整数,带进多项式中看看结果是不是0即可。

这里有一个技巧就是秦九韶算法,请读者自行查看学习。

时间复杂度O(n*m)。

然后你应该可以拿30分。

我们发现这些数都太大了,要开高精度。然后你愉快地拿了50分——复杂度O(n*m*length)会爆炸。

这里我们考虑hash的思想,对结果取模(最好是一个很大的质数P),如果结果是零就说明这是一个解。

应为如果结果是零,那么要么这是一个解,要么结果是p的倍数(这样的概率很小,小到不需要考虑)。

如果你运气真的不好,就多试几个不同的质数。如果这还不行,你就可以去买彩票了#include <iostreausing namespace std;

const long long p = 1e9 + 7; 

long long n, m, a[110], ans[1000010], cnt;

long long read() {
    //读入时要取模
        long long ret = 0, f = 1;
    char ch = getchar();
    while (!isdigit(ch)) {
        if (ch == ‘-‘) f = -1;
        ch = getchar();
    }
    while (isdigit(ch)) {
        ret = (ret * 10 + ch - ‘0‘) % p;
        ch = getchar();
    }
    return ret * f;
}

int main() {
    cin >> n >> m;
    for (long long i = 0; i <= n; i++) {
        a[i] = read();//这里不能直接读入(这不是快读)
    }
    for (long long i = 1; i <= m; i++) {
        long long x = i, fx = 0;
                //秦九韶算法
        for (long long j = n; j >= 0; j--) {
            fx = ((a[j] + fx) * x) % p;
        }
        if (fx == 0) {
            ans[++cnt] = x;
        }
    }
    cout << cnt << endl;
    for (long long i = 1; i <= cnt; i++) {
        cout << ans[i] << endl;
    }
    return 0;
}

原文地址:https://www.cnblogs.com/zcr-blog/p/11826651.html

时间: 2024-11-07 22:28:57

[noip2014]P2312 解方程的相关文章

NOIP2014/洛谷P2312 解方程

NOIP2014/洛谷P2312 解方程 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数

codevs3732==洛谷 解方程P2312 解方程

P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次

[NOIP2014] 提高组 洛谷P2312 解方程

题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数解的个数. 接下来每行一个整数,按照从小到

洛谷 P2312 解方程

题目描述 已知多项式方程: $a_0+a_1x+a_2x^2+..+a_nx^n=0$//用LaTex好看多了 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数解的个

luogu P2312 解方程

题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数解的个数. 接下来每行一个整数,按照从小到

P2312 解方程

题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数解的个数. 接下来每行一个整数,按照从小到

$Noip2014/Luogu2312$ 解方程

$Luogu$ $Sol$ 枚举解+秦九韶公式计算+取模. $Code$ #include<iostream> #include<cstdio> #include<cstring> #include<queue> #include<algorithm> #define il inline #define Rg register #define go(i,a,b) for(Rg int i=a;i<=b;++i) #define yes(i,

【NOIP2014】解方程

Description Input Output Sample Input Sample Output 题解: 这个题目本来是很难的,但因为数据很水,所以就很容易水过去了. 首先我们要使得f(x)==0,那么f(x)mod 任何数都必定是0,那么我们可以选择合适的质数,对f(x)取模,那么不包含这个质因子的所有所有数都会被我们排除,所以我们可以多尝试选出很多个质数进行检查,wa的几率就十分小了. 然后为了算出f(x),我们必须写一个大整数取模,讲取模之后的预处理出来.然后可以用秦九韶算法来求表达

【BZOJ 3751】 [NOIP2014]解方程

3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 914  Solved: 173 [Submit][Status][Discuss] Description 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1,