Rubost PCA 优化

Rubost PCA 优化

2017-09-03 13:08:08 YongqiangGao 阅读数 2284更多

分类专栏: 背景建模

版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/u010510350/article/details/77803572

最近一直在看Robust PCA做背景建模的paper, 顺便总结了一下了Robust PCA.前面一篇博客介绍了PCA与Robust PCA区别,本篇博客总结Robust PCA 常见的优化方法,欢迎交流学习。在这里强烈推荐一篇博客Rachel Zhang的Robust PCA 学习笔记

1.预备知识

2.问题描述

许多实际应用中已知的数据矩阵D往往是低秩或近似低秩的,但存在随机幅值任意大且分布稀疏的误差破坏了原有数据的低秩性,为了恢复矩阵D的低秩结构,可将矩阵D分解为两个矩阵之和,即D=A+E,其中矩阵A和E未知,但A是低秩的,E是稀疏的。 
 
当矩阵E的元素服从独立同分布的高斯分布时,可用经典的PCA来获得最优的矩阵A,即转换为如下最优化问题: 
 
当E为稀疏的大噪声矩阵时,同时引入折中因此,此问题可转化为如下优化问题: 
 
上式中秩函数、0范数均非凸,变成了NP-hard问题,需要对其松弛,方可进行优化。由范数知识可知,核范数是秩函数的凸包,1范数是0范数的凸包,所以上述NP-hard问题松弛后可转化凸优化问题: 

3.Rubost PCA优化

增广拉格郎日乘子法(Augmented Lagrang Multipliers)

交替方向法(Alternating Direction Methods)

ADM 是对ALM的改善,加快了收敛速度,又称为不精确拉格朗日乘子法。 

迭代阈值法(Iterative Thresholding)

**加速近端梯度(Accelerated Proximal Gradient)

** 
将优化问题式的等式约束松弛到目标函数中,得到如下的拉格朗日函数: 

f(A,E)的Frechet梯度Lipschitz连续性推导 
 
f(x)二次逼近推导 

4.Rubost PCA优化总结

IT算法的迭代形式简单且收敛,但收敛速度比较慢,且很难选取合适的步长;APG与IT算法类似,但它却大大降低了迭代次数;ALM比APG快很多,而且ALM可以达到较高的精度,需要较低的存储空间。不精确拉格朗日乘子法(IALM)改善了EALM,不需要求解精确解,速度较快。

参考 
1. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices 
2. Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix 
3. A Singular Value Thresholding Algorithm for Matrix Completion 
4. Sparse and Low-Rank Matrix Decomposition via Alternating Direction Methods 
5. Robust Principal Component Analysis 
6. http://blog.csdn.net/tiandijun/article/details/44917237

原文地址:https://www.cnblogs.com/think90/p/11880221.html

时间: 2024-10-27 06:47:23

Rubost PCA 优化的相关文章

机器学习公开课笔记(8):k-means聚类和PCA降维

K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis) 管理计算机集群(Organize Computer Clusters) 天文学数据分析(Astronomical Data Analysis) K-Means算法属于非监督式学习的一种,算法的输入是:训练数据集$\{x^{(1)},x^{(2)},\ldots, x^{(m)}\}$(其中$x^

PCA原理(转)

PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在

主成分分析(PCA)原理总结

主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据.具体的,假如我们的数据集是n维的,共有m个数据$(x^{(1)},x^{(2)},...,x^{(m)})$.我们希望将这m个数据的维度从n维降到n'维

最小方差解释(线性代数看PCA)

PCA降维                         ——最小方差解释(线性代数看PCA)    注:根据网上资料整理而得,欢迎讨论 机器学习算法的复杂度和数据的维数有着密切关系,甚至与维数呈指数级关联.因此我们必须对数据进行降维. 降维当然意味着信息的丢失,不过鉴于实际数据本身常常存在的相关性,我们可以想办法在降维的同时将信息的损失尽量降低. PCA是一种具有严格数学基础并且已被广泛采用的降维方法. 协方差矩阵及优化目标 如果我们必须使用一维来表示这些数据,又希望尽量保留原始的信息,你要

PCA(principal component analysis)主成分分析法

<Aggregating local descriptors into a compact image representation>论文笔记 在论文中,提取到VLAD特征后,要对特征向量进行PCA降维,就是用一个大小为D' * D的矩阵M,对VLAD特征向量x做变换,降维后的vector是x' = Mx,x'的大小是D'维.矩阵M是由原样本的协方差矩阵的D'个特征向量构成. 为什么M要是特征向量的矩阵呢? 根据PRML中的内容,理解如下: 1,Maxinum Variance Formula

A tutorial on Principal Components Analysis | 主成分分析(PCA)教程

A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components Analysis, February 26, 2002. 翻译:houchaoqun.时间:2017/01/18.出处:http://blog.csdn.net/houchaoqun_xmu  |  http://blog.csdn.net/Houchaoqun_XMU/article/details

PCA的数学原理

PCA(Principal Component Analysis)主成成分分析法,是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学

主成分分析(PCA)原理及R语言实现

原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)——基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 主成分分析(PCA)原理详解(推荐) 多变

PCA 原理

PCA的数学原理(转) 1 年前 PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章