嵌入式开发10种常见数字滤波算法

在单片机开发中,经常需要对输入的数据进行过滤处理,如传感器数据输出,AD采样等,合适的滤波处理能达到更好效果。下面分享几种较简单而常用的滤波算法:


一、限幅滤波法(又称程序判断滤波法)
二、中位值滤波法
三、算术平均滤波法
四、递推平均滤波法
五、中位值平均滤波法
六、限幅平均滤波法
七、一阶滞后滤波法
八、加权递推平均滤波法
九、消抖滤波法
十、限幅消抖滤波法

TOC


一、限幅滤波法(又称程序判断滤波法)

A、方法:

  • 根据经验判断,确定两次采样允许的最大偏差值(设为A)
  • 每次检测到新值时判断:
  • 如果本次值与上次值之差<=A,则本次值有效
  • 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值

B、优点:

  1. 能有效克服因偶然因素引起的脉冲干扰

C、缺点:

  1. 无法抑制那种周期性的干扰
  2. 平滑度差
int Filter_Value;
int Value;

void setup() {
  Serial.begin(9600);       // 初始化串口通信
  randomSeed(analogRead(0)); // 产生随机种子
  Value = 300;
}

void loop() {
  Filter_Value = Filter();       // 获得滤波器输出值
  Value = Filter_Value;          // 最近一次有效采样的值,该变量为全局变量
  Serial.println(Filter_Value); // 串口输出
  delay(50);
}

// 用于随机产生一个300左右的当前值
int Get_AD() {
  return random(295, 305);
}

// 限幅滤波法(又称程序判断滤波法)
#define FILTER_A 1
int Filter() {
  int NewValue;
  NewValue = Get_AD();
  if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A))
    return Value;
  else
    return NewValue;
}

二、中位值滤波法

A、方法:

  • 连续采样N次(N取奇数)
  • 把N次采样值按大小排列
  • 取中间值为本次有效值

B、优点:

  1. 能有效克服因偶然因素引起的波动干扰
  2. 对温度、液位的变化缓慢的被测参数有良好的滤波效果

C、缺点:

  1. 对流量、速度等快速变化的参数不宜
/*  N值可根据实际情况调整排序采用冒泡法*/
#define N  11

char filter()
{
   char value_buf[N];
   char count,i,j,temp;
   for ( count=0;count<N;count++)
   {
      value_buf[count] =get_ad();
      delay();
   }
   for (j=0;j<N-1;j++)
   {
      for (i=0;i<N-j;i++)
      {
         if (value_buf>value_buf[i+1] )
         {
           temp = value_buf;
           value_buf = value_buf[i+1];
            value_buf[i+1] = temp;
         }
      }
   }
   return value_buf[(N-1)/2];
}  

三、算术平均滤波法

A、方法:

  • 连续取N个采样值进行算术平均运算
  • N值较大时:信号平滑度较高,但灵敏度较低
  • N值较小时:信号平滑度较低,但灵敏度较高

N值的选取:一般流量,N=12;压力:N=4

B、优点:

  1. 适用于对一般具有随机干扰的信号进行滤波
  2. 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动

C、缺点:

  1. 对于测量速度较慢或要求数据计算速度较快的实时控制不适用
  2. 比较浪费RAM
#define N 12

char filter()
{
   int  sum = 0;
   for (count=0;count<N;count++)
   {
      sum + = get_ad();
      delay();
   }
   return (char)(sum/N);
}

四、递推平均滤波法

A、方法:

  • 把连续取N个采样值看成一个队列
  • 队列的长度固定为N
  • 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
  • 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
  • N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4

B、优点:

  1. 对周期性干扰有良好的抑制作用,平滑度高
  2. 适用于高频振荡的系统

C、缺点:

  1. 灵敏度低
  2. 对偶然出现的脉冲性干扰的抑制作用较差
  3. 不易消除由于脉冲干扰所引起的采样值偏差
  4. 不适用于脉冲干扰比较严重的场合
  5. 比较浪费RAM
// 递推平均滤波法(又称滑动平均滤波法)
#define FILTER_N 12
int filter_buf[FILTER_N + 1];
int Filter() {
  int i;
  int filter_sum = 0;
  filter_buf[FILTER_N] = Get_AD();
  for(i = 0; i < FILTER_N; i++) {
    filter_buf[i] = filter_buf[i + 1]; // 所有数据左移,低位仍掉
    filter_sum += filter_buf[i];
  }
  return (int)(filter_sum / FILTER_N);
}

五、中位值平均滤波法

A、方法:

  • 相当于“中位值滤波法”+“算术平均滤波法”
  • 连续采样N个数据,去掉一个最大值和一个最小值
  • 然后计算N-2个数据的算术平均值
  • N值的选取:3~14

B、优点:

  1. 融合了两种滤波法的优点
  2. 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差

C、缺点:

  1. 测量速度较慢,和算术平均滤波法一样
  2. 比较浪费RAM
// 中位值平均滤波法(又称防脉冲干扰平均滤波法)(算法1)
#define FILTER_N 100
int Filter() {
  int i, j;
  int filter_temp, filter_sum = 0;
  int filter_buf[FILTER_N];
  for(i = 0; i < FILTER_N; i++) {
    filter_buf[i] = Get_AD();
    delay(1);
  }
  // 采样值从小到大排列(冒泡法)
  for(j = 0; j < FILTER_N - 1; j++) {
    for(i = 0; i < FILTER_N - 1 - j; i++) {
      if(filter_buf[i] > filter_buf[i + 1]) {
        filter_temp = filter_buf[i];
        filter_buf[i] = filter_buf[i + 1];
        filter_buf[i + 1] = filter_temp;
      }
    }
  }
  // 去除最大最小极值后求平均
  for(i = 1; i < FILTER_N - 1; i++) filter_sum += filter_buf[i];
  return filter_sum / (FILTER_N - 2);
}

//  中位值平均滤波法(又称防脉冲干扰平均滤波法)(算法2)
#define FILTER_N 100
int Filter() {
  int i;
  int filter_sum = 0;
  int filter_max, filter_min;
  int filter_buf[FILTER_N];
  for(i = 0; i < FILTER_N; i++) {
    filter_buf[i] = Get_AD();
    delay(1);
  }
  filter_max = filter_buf[0];
  filter_min = filter_buf[0];
  filter_sum = filter_buf[0];
  for(i = FILTER_N - 1; i > 0; i--) {
    if(filter_buf[i] > filter_max)
      filter_max=filter_buf[i];
    else if(filter_buf[i] < filter_min)
      filter_min=filter_buf[i];
    filter_sum = filter_sum + filter_buf[i];
    filter_buf[i] = filter_buf[i - 1];
  }
  i = FILTER_N - 2;
  filter_sum = filter_sum - filter_max - filter_min + i / 2; // +i/2 的目的是为了四舍五入
  filter_sum = filter_sum / i;
  return filter_sum;
}

六、限幅平均滤波法

A、方法:

  • 相当于“限幅滤波法”+“递推平均滤波法”
  • 每次采样到的新数据先进行限幅处理,
  • 再送入队列进行递推平均滤波处理

B、优点:

  1. 融合了两种滤波法的优点
  2. 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差

C、缺点:

  1. 比较浪费RAM
// 限幅平均滤波法
#define FILTER_A 1
int Filter() {
  int i;
  int filter_sum = 0;
  filter_buf[FILTER_N - 1] = Get_AD();
  if(((filter_buf[FILTER_N - 1] - filter_buf[FILTER_N - 2]) > FILTER_A) || ((filter_buf[FILTER_N - 2] - filter_buf[FILTER_N - 1]) > FILTER_A))
    filter_buf[FILTER_N - 1] = filter_buf[FILTER_N - 2];
  for(i = 0; i < FILTER_N - 1; i++) {
    filter_buf[i] = filter_buf[i + 1];
    filter_sum += filter_buf[i];
  }
  return (int)filter_sum / (FILTER_N - 1);
}

七、一阶滞后滤波法

A、方法:

  • 取a=0~1
  • 本次滤波结果=(1-a)本次采样值+a上次滤波结果

B、优点:

  1. 对周期性干扰具有良好的抑制作用
  2. 适用于波动频率较高的场合

C、缺点:

  1. 相位滞后,灵敏度低
  2. 滞后程度取决于a值大小
  3. 不能消除滤波频率高于采样频率的1/2的干扰信号
// 一阶滞后滤波法
#define FILTER_A 0.01
int Filter() {
  int NewValue;
  NewValue = Get_AD();
  Value = (int)((float)NewValue * FILTER_A + (1.0 - FILTER_A) * (float)Value);
  return Value;
}

八、加权递推平均滤波法

A、方法:

  • 是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
  • 通常是,越接近现时刻的数据,权取得越大。
  • 给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低

B、优点:

  1. 适用于有较大纯滞后时间常数的对象
  2. 和采样周期较短的系统

C、缺点:

  1. 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
  2. 不能迅速反应系统当前所受干扰的严重程度,滤波效果差
// 加权递推平均滤波法
#define FILTER_N 12
int coe[FILTER_N] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};    // 加权系数表
int sum_coe = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12; // 加权系数和
int filter_buf[FILTER_N + 1];
int Filter() {
  int i;
  int filter_sum = 0;
  filter_buf[FILTER_N] = Get_AD();
  for(i = 0; i < FILTER_N; i++) {
    filter_buf[i] = filter_buf[i + 1]; // 所有数据左移,低位仍掉
    filter_sum += filter_buf[i] * coe[i];
  }
  filter_sum /= sum_coe;
  return filter_sum;
}

九、消抖滤波法

A、方法:

  • 设置一个滤波计数器
  • 将每次采样值与当前有效值比较:
  • 如果采样值=当前有效值,则计数器清零
  • 如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
  • 如果计数器溢出,则将本次值替换当前有效值,并清计数器

B、优点:

  1. 对于变化缓慢的被测参数有较好的滤波效果,
  2. 可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动

C、缺点:

  1. 对于快速变化的参数不宜
  2. 如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统
// 消抖滤波法
#define FILTER_N 12
int i = 0;
int Filter() {
  int new_value;
  new_value = Get_AD();
  if(Value != new_value) {
    i++;
    if(i > FILTER_N) {
      i = 0;
      Value = new_value;
    }
  }
  else
    i = 0;
  return Value;
}

十、限幅消抖滤波法

A、方法:

  • 相当于“限幅滤波法”+“消抖滤波法”
  • 先限幅,后消抖

B、优点:

  1. 继承了“限幅”和“消抖”的优点
  2. 改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统

C、缺点:

  1. 对于快速变化的参数不宜
// 限幅消抖滤波法
#define FILTER_A 1
#define FILTER_N 5
int i = 0;
int Filter() {
  int NewValue;
  int new_value;
  NewValue = Get_AD();
  if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A))
    new_value = Value;
  else
    new_value = NewValue;
  if(Value != new_value) {
    i++;
    if(i > FILTER_N) {
      i = 0;
      Value = new_value;
    }
  }
  else
    i = 0;
  return Value;
}

原文地址:https://www.cnblogs.com/HalfCircle/p/44af2b4c5ec986a5a6e197889f9604c3.html

时间: 2024-08-05 00:00:25

嵌入式开发10种常见数字滤波算法的相关文章

10种常见的软件架构模式

架构模式 架构模式是一个通用的.可重用的解决方案,用于在给定上下文中的软件体系结构中经常出现的问题.架构模式与软件设计模式类似,但具有更广泛的范围.在本文中,将简要地解释以下10种常见的体系架构模式,以及它们的用法.优缺点. 分层模式 客户端-服务器模式 主从设备模式 管道-过滤器模式 代理模式 点对点模式 事件总线模式 模型-视图-控制器模式 黑板模式 解释器模式 一. 分层模式 这种模式也称为多层体系架构模式.它可以用来构造可以分解为子任务组的程序,每个子任务都处于一个特定的抽象级别.每个层

JavaScript版几种常见排序算法

今天发现一篇文章讲“JavaScript版几种常见排序算法”,看着不错,推荐一下原文:http://www.w3cfuns.com/blog-5456021-5404137.html 算法描述: * 冒泡排序:最简单,也最慢,貌似长度小于7最优* 插入排序: 比冒泡快,比快速排序和希尔排序慢,较小数据有优势* 快速排序:这是一个非常快的排序方式,V8的sort方法就使用快速排序和插入排序的结合* 希尔排序:在非chrome下数组长度小于1000,希尔排序比快速更快* 系统方法:在forfox下系

机器学习几种常见优化算法介绍

机器学习几种常见优化算法介绍 https://blog.csdn.net/class_brick/article/details/78949145 1. 梯度下降法(Gradient Descent) 2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods) 3. 共轭梯度法(Conjugate Gradient) 4. 启发式优化方法 5. 解决约束优化问题--拉格朗日乘数法 我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企

几种常见排序算法

几种常见排序算法 几种常见排序算法 写在前面 基础介绍 初级排序算法 selection sort选择排序 insertion sort插入排序 ShellSort希尔排序 shuffing不是排序算法 merge sort归并排序 Abstract in-place merge原地归并的抽象方法 Top-down mergesort自顶向下的归并排序 Bottom-up mergesort自底向上的归并排序 quicksort 三向切分的快速排序 Heapsort堆排序 总结和比较 命题 本文

浅析10种常见的黑帽seo手法

虽然博主并不认同黑帽seo手法,但是一些常见的黑帽手法还是需要了解的,增加自己对黑帽的认知,也可以在自己优化网站时适时的规避开这些黑帽手法,从而避免自己的网站被搜索引擎惩罚.好了,话不多说,下面进入今天的主题:10种常见的黑帽手法详解. 1.关键词堆积 这是老生常谈的问题,最常见的一种黑帽seo手法.在网站的内容中,我们讲究的是自然出现关键词,没必要出现时就不要出现,而有些人单纯的为了提升关键词的"密度"在文章中刻意并大量出现关键词,其引出的后果是语句不通顺,严重影响用户的阅读体验,导

几种常见模式识别算法整理和总结

这学期选了门模式识别的课.发现最常见的一种情况就是,书上写的老师ppt上写的都看不懂,然后绕了一大圈去自己查资料理解,回头看看发现,Ah-ha,原来本质的原理那么简单,自己一開始仅仅只是被那些看似formidable的细节吓到了.所以在这里把自己所学的一些点记录下来,供备忘,也供參考. 1. K-Nearest Neighbor K-NN能够说是一种最直接的用来分类未知数据的方法.基本通过以下这张图跟文字说明就能够明确K-NN是干什么的 简单来说,K-NN能够看成:有那么一堆你已经知道分类的数据

几种常见排序算法的总结

下面总结几种常见的排序算法,包括插入排序.选择排序.快速排序.归并排序和堆排序. 时间复杂度: 插入排序 选择排序 快速排序 归并排序 堆排序 Ο(n2) Ο(n2) Ο(nlog(n)) Ο(nlog(n)) Ο(nlog(n)) 算法概述: 插入排序:每次从未排好序的数据堆中拿出一个数,插入到已排好序的数据队列的正确位置. 选择排序:每次从未排好序的数据堆中找到最小的数,插入到已排好序的数据队列的头部. 快速排序:以数据堆中的一个数为标准,将数据堆分为小于等于和大于该数的两堆,对于分割后的两

10种传统机器学习算法

1基于CF的推荐算法 1.1算法简介 CF(协同过滤)简单来形容就是利用兴趣相投的原理进行推荐,协同过滤主要分两类,一类是基于物品的协同过滤算法,另一种是基于用户的协同过滤算法,这里主要介绍基于物品的协同过滤算法. 给定一批用户,及一批物品,记Vi表示不同用户对物品的评分向量,那么物品i与物品j的相关性为: 上述公式是利用余弦公式计算相关系数,相关系数的计算还有:杰卡德相关系数.皮尔逊相关系数等. 计算用户u对某一物品的偏好,记用户u对物品i的评分为score(u,i),用户u对物品i的协同过滤

几种常见排序算法的基本介绍,性能分析,和c语言实现

本文介绍7种常见的排序算法,以及他们的原理,性能分析和c语言实现: 为了能够条理清楚,本文所有的算法和解释全部按照升序排序进行 首先准备一个元素无序的数组arr[],数组的长度为length,一个交换函数swap, 在main函数中实现排序函数的调用,并输出排序结果: void swap(int*x , int*y) { int temp = *x; *x = *y; *y = temp; } int main() { int arr[] = { 1,8,5,7,4,6,2,3}; int le