[BZOJ 1492][NOI2007]货币兑换Cash(CDQ分治+斜率优化Dp)

Description

小Y最近在一家金券交易所工作。该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下

简称B券)。每个持有金券的顾客都有一个自己的帐户。金券的数目可以是一个实数。每天随着市场的起伏波动,

两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目。我们记录第 K 天中 A券 和 B券 的

价值分别为 AK 和 BK(元/单位金券)。为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法

。比例交易法分为两个方面:(a)卖出金券:顾客提供一个 [0,100] 内的实数 OP 作为卖出比例,其意义为:将

OP% 的 A券和 OP% 的 B券 以当时的价值兑换为人民币;(b)买入金券:顾客支付 IP 元人民币,交易所将会兑

换给用户总价值为 IP 的金券,并且,满足提供给顾客的A券和B券的比例在第 K 天恰好为 RateK;例如,假定接

下来 3 天内的 Ak、Bk、RateK 的变化分别为:

假定在第一天时,用户手中有 100元 人民币但是没有任何金券。用户可以执行以下的操作:

注意到,同一天内可以进行多次操作。小Y是一个很有经济头脑的员工,通过较长时间的运作和行情测算,他已经

知道了未来N天内的A券和B券的价值以及Rate。他还希望能够计算出来,如果开始时拥有S元钱,那么N天后最多能

够获得多少元钱。

Solution

论文题啦…从《Cash》谈一类分治算法的应用

CDQ分治看起来比平衡树维护凸包要友好的多…

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define MAXN 100005
#define eps 1e-9
const double INF=1e100;
using namespace std;
int n,s,stack[MAXN],top;
double a[MAXN],b[MAXN],R[MAXN],f[MAXN];
struct Node
{
    double s,x,y;
    int id;
    bool operator < (const Node& x) const
    {return s<x.s;}
}data[MAXN],t[MAXN];
double slope(int i,int j)
{
    if(fabs(data[j].x-data[i].x)<eps)return data[j].y>data[i].y?INF:-INF;
    return (data[j].y-data[i].y)/(data[j].x-data[i].x);
}
void merge(int l,int r)
{
    if(l==r)return;
    int mid=(l+r)>>1;
    int i=l,j=mid+1,k=l;
    while(i<=mid&&j<=r)
    {
        if(data[i].x<data[j].x)t[k++]=data[i++];
        else t[k++]=data[j++];
    }
    while(i<=mid)t[k++]=data[i++];
    while(j<=r)t[k++]=data[j++];
    for(int i=l;i<=r;i++)data[i]=t[i];
}
void solve(int l,int r)
{
    if(l==r)
    {
        f[l]=max(f[l],f[l-1]);
        data[l].y=f[l]/(R[l]*a[l]+b[l]);
        data[l].x=data[l].y*R[l];
        return;
    }
    int mid=(l+r)>>1;for(int i=l,j=mid+1,k=l;k<=r;k++)
    if(data[k].id<=mid)t[i++]=data[k];
    else t[j++]=data[k];
    for(int i=l;i<=r;i++)data[i]=t[i];
    solve(l,mid);
    top=0;
    for(int i=l;i<=mid;i++)
    {
        while(top>1&&slope(stack[top-1],stack[top])<eps+slope(stack[top],i))
        top--;
        stack[++top]=i;
    }
    for(int i=mid+1;i<=r;i++)
    {
        while(top>1&&data[i].s+eps>slope(stack[top-1],stack[top]))
        top--;
        f[data[i].id]=max(f[data[i].id],data[stack[top]].x*a[data[i].id]+data[stack[top]].y*b[data[i].id]);
    }
    solve(mid+1,r);
    merge(l,r);
}
int main()
{
    scanf("%d%lf",&n,&f[0]);
    for(int i=1;i<=n;i++)
    {
        scanf("%lf%lf%lf",&a[i],&b[i],&R[i]);
        data[i].id=i,data[i].s=-a[i]/b[i];
    }
    sort(data+1,data+1+n);
    solve(1,n);
    printf("%.3lf\n",f[n]);
    return 0;
} 
时间: 2024-11-03 21:51:43

[BZOJ 1492][NOI2007]货币兑换Cash(CDQ分治+斜率优化Dp)的相关文章

bzoj1492[NOI2007]货币兑换Cash cdq分治+斜率优化dp

1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5541  Solved: 2228[Submit][Status][Discuss] Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金

BZOJ 1492 NOI 2007 货币兑换Cash CDQ分治+斜率优化DP

题目大意:有两种金券,A和B.每一天有一个rate值,表示购入的比例:还有每一天AB金券的售价.现在给出初始的钱数,问最后能够获得多少钱. 思路:这算是神题了吧,啃论文啃别人代码将近一天才算有点明白. 首先题目中说的可以买一部分或者卖一部分是扯淡的,因为为了最大获利一定要全部买入,全部卖出.朴素的DP方程就好弄了. 设f[i]为第i天最多的B券的数量.那么f[i] = (rate[j] * f[j] * a[i] + f[j] * b[i]) / (rate[i] * a[i] + b[i])

【uoj#244】[UER #7]短路 CDQ分治+斜率优化dp

题目描述 给出 $(2n+1)\times (2n+1)$ 个点,点 $(i,j)$ 的权值为 $a[max(|i-n-1|,|j-n-1|)]$ ,找一条从 $(1,1)$ 走到 $(2n+1,2n+1)$ 的路径,使得经过的点(包括起点和终点)权值和最小.求这个权值和. 输入 第一行一个正整数 $n$ . 第二行 $n+1$ 个正整数 $a[0],a[1],…,a[n]$ ,表示从内到外每层的中继器的延时值. 输出 输出一行一个数表示改造后的最短引爆时间. 样例输入 99 5 3 7 6 9

BZOJ 1492: [NOI2007]货币兑换Cash( dp + 平衡树 )

dp(i) = max(dp(i-1), x[j]*a[i]+y[j]*b[i]), 0<j<i. x, y表示某天拥有的最多钱去买金券, 金券a和金券b的数量. 然后就很明显了...平衡树维护上凸壳, 询问时就在凸壳上二分...时间复杂度O(NlogN) ----------------------------------------------------------------------------------------------- #include<cmath> #i

bzoj 1492: [NOI2007]货币兑换Cash

Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目.我们记录第 K 天中 A券 和 B券 的 价值分别为 AK 和 BK(元/单位金券).为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法 .比例交易法分为两个方面:(a)卖出金券:顾客提

BZOJ 3963: [WF2011]MachineWorks [CDQ分治 斜率优化DP]

传送门 当然了WF的题uva hdu上也有 你的公司获得了一个厂房N天的使用权和一笔启动资金,你打算在这N天里租借机器进行生产来获得收益.可以租借的机器有M台.每台机器有四个参数D,P,R,G.你可以在第D天花费P的费用(当然,前提是你有至少P元)租借这台机器,从第D+1天起,操作机器将为你产生每天G的收益.在你不再需要机器时,可以将机器卖掉,一次性获得R的收益.厂房里只能停留一台机器.不能在购买和卖出机器的那天操作机器,但是可以在同一天卖掉一台机器再买入一台.在第N+1天,你必须卖掉手上的机器

bzoj3672/luogu2305 购票 (运用点分治思想的树上cdq分治+斜率优化dp)

我们都做过一道题(?)货币兑换,是用cdq分治来解决不单调的斜率优化 现在它放到了树上.. 总之先写下来dp方程,$f[i]=min\{f[j]+(dis[i]-dis[j])*p[i]+q[i]\} ,j是i的祖先,dis[i]-dis[j]<=l[i]$ ,其中dis[i]表示1号点到i号点的距离 可以很明显的看出斜率优化,但我们要放到树上做 于是就运用点分治的思想来找重心(正如普通的cdq是找重点一样) 步骤是这样的: 1.对于根为x的一个子树,我们先找到它的重心rt 2.把rt的子树刨掉

bzoj 1492 [NOI2007]货币兑换Cash(斜率dp+cdq分治)

Description Input 第一行两个正整数N.S,分别表示小Y 能预知的天数以及初始时拥有的钱数. 接下来N 行,第K 行三个实数AK.BK.RateK,意义如题目中所述 Output 只有一个实数MaxProfit,表示第N 天的操作结束时能够获得的最大的金钱 数目.答案保留3 位小数. Sample Input 3 100 1 1 1 1 2 2 2 2 3 Sample Output 225.000 HINT 测试数据设计使得精度误差不会超过10-7.对于40%的测试数据,满足N

bzoj [NOI2007]货币兑换Cash (cdq分治+斜率优化 )

1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MB Submit: 2454  Solved: 1078 [Submit][Status][Discuss] Description Input 第一行两个正整数N.S,分别表示小Y 能预知的天数以及初始时拥有的钱数. 接下来N 行,第K 行三个实数AK.BK.RateK,意义如题目中所述 Output 只有一个实数MaxProfit,表示第N 天的操作结束时能够获得的最大的