POJ题目2689 Prime Distance(任何区间素数筛选)

Prime Distance

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13459   Accepted: 3578

Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number
that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers
that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.

Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair.
You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.

Source

Waterloo local 1998.10.17

思路:http://blog.csdn.net/a601025382s/article/details/12111297

题意:输入区间[l,u],其中l和u为int范围的整数,区间最大为1000000。求出[l,u]中,相邻素数只差最大和最小的素数对。当存在多个时,输出较小的素数对。

题解:l,u范围太大,不能直接求int范围的素数。而区间间隔比较小,只有1e6,而且对于int范围内的合数来说,最小质因子必定小于2^16。所以可以求出[l,u]中合数,转而求出素数,然后暴力枚举所有素数对即可。

如何求区间[l,u]中的合数:上面已经说了,合数的最小质因子小于2^16,即小于50000。所以先求出小于50000的所有素数。则区间[l,u]中的合数,必定可以表示为小于50000的素数的倍数。对于素数p来说,令a=(l-1)/p+1,b=u/p。则枚举j=a到b,j*p可以枚举所有[l,u]中质因子含有p的合数。枚举所有小于50000的素数,然后用上述方式枚举倍数,即可找出[l,u]中所有的合数。

由于l,u在int范围,所以不能直接用数组标记。需要加个偏移量,取l,则数组大小小于1e6的f[0,u-l],即可标记。

接着枚举区间中所有的相邻素数对即可。

特别注意:由于1不是小于50000的素数的倍数,所以在与合数相斥中,会被当成素数。需要特别处理下。

ac代码

#include<stdio.h>
#include<string.h>
#include<math.h>
int is[50010],prime[50010],f[1000010];
__int64 l,u;
int k;
void fun()
{
	int i,j;
	k=0;
	for(i=2;i<50010;i++)
	{
		if(!is[i])
		{
			prime[k++]=i;
			for(j=i+i;j<50010;j+=i)
			{
				is[j]=1;
			}
		}
	}
}
int main()
{
	fun();
	while(scanf("%I64d%I64d",&l,&u)!=EOF)
	{
		if(l==1)
			l=2;
		int i,j,a,b;
		memset(f,0,sizeof(f));
		for(i=0;i<k;i++)
		{
			a=(l-1)/prime[i]+1;
			b=u/prime[i];
			for(j=a;j<=b;j++)
			{
				if(j>1)
				{
					f[j*prime[i]-l]=1;
				}
			}
		}
		int p=-1,maxn=-1,minn=1<<30,x1,x2,y1,y2;
		for(i=0;i<=(u-l);i++)
		{
			if(f[i]==0)
			{
				if(p==-1)
				{
					p=i;
					continue;
				}
				if(maxn<i-p)
				{
					maxn=i-p;
					x1=p+l;
					y1=i+l;
				}
				if(minn>i-p)
				{
					minn=i-p;
					x2=p+l;
					y2=i+l;
				}
				p=i;
			}
		}
		if(maxn==-1)
		{
			printf("There are no adjacent primes.\n");
		}
		else
			printf("%d,%d are closest, %d,%d are most distant.\n",x2,y2,x1,y1);
	}
}
时间: 2024-10-12 11:15:26

POJ题目2689 Prime Distance(任何区间素数筛选)的相关文章

[ACM] POJ 2689 Prime Distance (大区间素数筛选)

Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 Description The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number th

POJ - 2689 Prime Distance(大区间素数筛选)

Description The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is

poj 2689 Prime Distance(大区间筛素数)

http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 因为L<U<=2147483647,直接筛素数是不行的,数组就开不了.但是可以根据素数筛的原理.我们先筛出sqrt(2147483647)以内的素数,然后拿这些素数去筛[L,U]之间的素数,即两次素数筛.但是L,U还是很大,但U-L<=1000000,所以进行区间平移,将[L,U]平移为[0,U-L],就能用数组放得下. #include &l

POJ 2689 - Prime Distance - [筛法求素数]

题目链接:http://poj.org/problem?id=2689 Time Limit: 1000MS Memory Limit: 65536K Description The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousan

POJ 2689 Prime Distance 素数筛选法应用

题目来源:POJ 2689 Prime Distance 题意:给出一个区间L R 区间内的距离最远和最近的2个素数 并且是相邻的 R-L <= 1000000 但是L和R会很大 思路:一般素数筛选法是拿一个素数 然后它的2倍3倍4倍...都不是 然后这题可以直接从2的L/2倍开始它的L/2+1倍L/2+2倍...都不是素数 首先筛选出一些素数 然后在以这些素数为基础 在L-R上在筛一次因为 R-L <= 1000000 可以左移开一个1百万的数组 #include <cstdio>

poj 2689 Prime Distance 【数论】【筛法求素数】

题目链接:传送门 题目大意: 给你L和R两组数,L和R的范围是2^32,其间隔(即R-L最大为1,000,000.) .让你求出L和R之间素数的最大间隔和最小的间隔. 比如 2 17.之间的最小素数间隔是2 3,最大的素数间隔是11 17. 要是直接进行一个2^32次方筛法然后在判断是会T的. 我们这样来想,筛法求素数的原理是什么: /**vis数组标记为0则说明是素数*/ int vis[10005]; void getPrimevis(int n) { int m=sqrt(n+0.5);

LightOj 1197 Help Hanzo (区间素数筛选)

题目大意: 给出T个实例,T<=200,给出[a,b]区间,问这个区间里面有多少个素数?(1 ≤ a ≤ b < 231, b - a ≤ 100000) 解题思路: 由于a,b的取值范围比较大,无法把这个区间内的所以素数全部筛选出来,但是b-a这个区间比较小,所以可以用区间素数筛选的办法解决这个题目. 代码: 1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<

[ACM] POJ 2689 Prime Distance (筛选范围大素数)

Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 Description The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number th

POJ 2689 Prime Distance(素数筛选)

题目链接:http://poj.org/problem?id=2689 题意:给出一个区间[L, R],找出区间内相连的,距离最近和距离最远的两个素数对.其中(1<=L<R<=2,147,483,647) R - L <= 1000000 思路:数据量太大不能直接筛选,要采用两次素数筛选来解决.我们先筛选出2 - 50000内的所有素数,对于上述范围内的数,如果为合数,则必定有2 - 50000内的质因子.换一句话说,也就是如果一个数没有2 - 50000内的质因子,那么这个数为素