在路上---学习篇(一)Python 数据结构和算法 (5)二分查找、二叉树遍历

独白:

  利用算法进行查找指定元素,最近学习二分查找和二叉树遍历。二分查找前提是在有序中进行查找,二叉树引入了树的概念。树的概念其中有许多小知识点,也是一种新的数据结构。还是之前的感悟,需了解其本质才会写出更好的算法。



二分查找

  二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

‘‘‘
二分查找
时间复杂度:O(logn)

‘‘‘
‘‘‘
前提是在一个有序的列表
‘‘‘

import time

#
# def binary_search(list, item):
#     ‘‘‘ 非递归实现 ‘‘‘
#
#     first = 0
#     last = len(list) - 1
#     while first <= last :
#         midpoint = ( first + last ) // 2
#         if list[midpoint] == item:
#             return True
#         elif item < list[midpoint]:
#             last = midpoint - 1
#         else:
#             first = midpoint + 1
#     return False

def binary_search(list, item):
    """ 递归实现 """
    print(list)
    if len(list) == 0:
        return False

    else:
        midpoint = len(list) // 2
        if list[midpoint] == item:
            return True
        else:
            if list[midpoint] > item:
                return binary_search(list[:midpoint], item)
            else:
                return binary_search(list[midpoint + 1:], item)

if __name__ == ‘__main__‘:
    # 开始时间
    first_time = time.time()

    # 建立个有序的列表
    lis = [1, 2, 5, 6, 7, 8, 9, 17, 156, 678]

    # 列表排序
    print(binary_search(lis, 6))

    # 结束时间
    last_time = time.time()

    print("共用时%s" % (last_time - first_time))

树与树算法

树的概念

树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

  • 每个节点有零个或多个子节点;
  • 没有父节点的节点称为根节点;
  • 每一个非根节点有且只有一个父节点;
  • 除了根节点外,每个子节点可以分为多个不相交的子树;

树的术语

  • 节点的度:一个节点含有的子树的个数称为该节点的度;
  • 树的度:一棵树中,最大的节点的度称为树的度;
  • 叶节点或终端节点:度为零的节点;
  • 父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点;
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  • 树的高度或深度:树中节点的最大层次;
  • 堂兄弟节点:父节点在同一层的节点互为堂兄弟;
  • 节点的祖先:从根到该节点所经分支上的所有节点;
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
  • 森林:由m(m>=0)棵互不相交的树的集合称为森林;

树的种类

  • 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
  • 有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
    • 二叉树:每个节点最多含有两个子树的树称为二叉树;

      • 完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树;
      • 平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
      • 排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
    • 霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树;
    • B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树

二叉树的基本概念

二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)

二叉树的性质(特性)

性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)

class Node(object):
    ‘‘‘节点类‘‘‘
    def __init__(self, elem, lchild = None, rchild = None):
        self.elem = elem
        self.lchild = lchild
        self.rchild = rchild

class Tree(object):
    ‘‘‘树类‘‘‘
    def __init__(self, root = None):
        self.root = root

    def add(self, elem):
        ‘‘‘为树添加节点‘‘‘
        node = Node(elem)
        # 如果是空树,对根节点进行赋值
        if self.root == None:
            self.root = node
            return
        else:
            queue = []
            queue.append(self.root)
            # 对已有节点进行层次遍历
            while queue:
                # 弹出队列的第一个元素
                cur = queue.pop(0)
                if cur.lchild is None:
                    cur.lchild = node
                    return
                elif cur.rchild is None:
                    cur.rchild = node
                    return
                else:
                    # 如果左右节点不为空,加入队列继续判断
                    queue.append(cur.lchild)
                    queue.append(cur.rchild)

二叉树的遍历

树的遍历是树的一种重要的运算。所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历(traversal)。那么树的两种重要的遍历模式是深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。

深度优先遍历

对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。

    • 先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
      根节点->左子树->右子树
def preorder(self, root):
    """递归实现先序遍历"""
    if root == None:
        return
    print(root.elem)
    self.preorder(root.lchild)
    self.preorder(root.rchild)
    • 中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树                                 左子树->根节点->右子树
def inorder(self, root):
    """递归实现中序遍历"""
    if root == None:
        return
    self.inorder(root.lchild)
    print(root.elem)
    self.inorder(root.rchild)
    • 后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点                                                                               左子树->右子树->根节点
def postorder(self, root):
    """递归实现后续遍历"""
    if root == None:
        return
    self.postorder(root.lchild)
    self.postorder(root.rchild)
    print (root.elem)

广度优先遍历(层次遍历)

从树的root开始,从上到下从从左到右遍历整个树的节点

def breadth_travel(self, root):
    """利用队列实现树的层次遍历"""
    if root == None:
        return
    queue = []
    queue.append(root)
    while queue:
        node = queue.pop(0)
        print (node.elem)
        if node.lchild != None:
            queue.append(node.lchild)
        if node.rchild != None:
            queue.append(node.rchild)
时间: 2024-12-21 04:31:07

在路上---学习篇(一)Python 数据结构和算法 (5)二分查找、二叉树遍历的相关文章

【数据结构与算法】二分查找

基本思想 首先将给定的值K与表中中间位置元素比较,若相等,则查找成功:若不等,则所需查找的元素只能在中间数据以外的前半部分或者后半部分,缩小范围后继续进行同样的查找,如此反复,直到找到为止. 代码实现 /** * 源码名称:BinarySearch.java * 日期:2014-08-14 * 程序功能:二分查找 * 版权:[email protected] * 作者:A2BGeek */ public class BinarySearch { public static int binaryS

数据结构与算法之二分查找

问题:如果有一个有100个元素的已经排好序的数组,然后给你一个数,让你判断这个数组里面是否有这个数,你该怎样去做? 最简单的方法就是从数组的第一个元素开始,逐一与所给的数比较,直到比较完所有数组的元素为止,这种查找方法叫简单查找,是一个费事的方法.但我们想,既然这100个数都已经排好序了,那么我先拿中位数与所给数比较,如果两者匹配则问题解决.如果中位数比所给数大,那么所给数可能存在与中位数左边,我们就可以拿左边那些数的中位数与所给数比较:如果中位数比所给数小,那么所给数可能存在与中位数的右边,我

Python数据结构与算法—排序和查找

排序和查找 排序(Sort)是将无序的记录序列(或称文件)调整成有序的序列. 常见排序方法: 冒泡排序 冒泡排序是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成. 1 # 冒泡 2 def bubble(list_): 3 # 外层循环表达比较多少轮 4 for i in range(len(list_) - 1): 5 #内层循环把控比较次数 6 for j in r

数据结构与算法(6)二叉树遍历

首先,我们看看前序.中序.后序遍历的特性: 前序遍历:     1.访问根节点     2.前序遍历左子树     3.前序遍历右子树 中序遍历:     1.中序遍历左子树     2.访问根节点     3.中序遍历右子树 后序遍历:     1.后序遍历左子树     2.后序遍历右子树     3.访问根节点 一.已知前序.中序遍历,求后序遍历 前序遍历:         GDAFEMHZ 中序遍历:         ADEFGHMZ 算法流程: 1 确定根,确定左子树,确定右子树. 2

数据结构与算法之-二分查找

概念     二分查找又称折半查找,它是一种效率较高的查找方法.它的时间复杂度为O(logn)     二分查找要求:有序的线性表 基本思想     二分查找的基本思想是划分当前查找区间,区间的范围一步一步的缩小,如果找到直接返回,反之直到区间只有一个元素时停止 实现     设R为一个值递增的有序线性表     实现步骤: 首先确定该区间的中点位置:mid=[(low+high)/2] 然后将key值与R[mid]的值比较:若相等,则直接返回当前mid,否则进行确定新的区间操作,这分为两种情况

数据结构和算法之——二分查找上

二分查找(Binary Search)的思想非常简单,但看似越简单的东西往往越难掌握好,想要灵活运用就更加困难. 1. 二分查找的思想? 生活中二分查找的思想无处不在.一个最常见的就是猜数游戏,我随机写一个 0 到 99 的数,然后你来猜我写的是什么.猜的过程中,我会告诉你每次是猜大了还是猜小了,直到猜中为止.假如我写的数是 23,猜数过程如下所示. 最多只需要 7 次就猜出来了,这个过程是很快的.同理,要查找某个数据是否在给定的数组中,我们同样也可以利用这个思想. 二分查找针对的是一个有序的数

python数据结构与算法 36 树的基本概念

树 学习目标 理解什么是树及使用方法 学会使用树实现映射 用列表实现树 用类和引用实现树 用递归实现树 用堆实现优先队列 树的例子 前面我们学习过栈和队列这类线性数据结构,并且体验过递归,现在我们学习另一种通用数据结构,叫做树.树在计算机科学中应用广泛,象操作系统.图形学.数据库系统.网络等都要用到树.树和他们在自然界中的表哥--植物树--非常相似,树也有根,有分枝,有叶子.不同之处是,数据结构的树,根在顶上,而叶子在底部. 在开始学习之前,我们来研究几个普通的例子.第一个是生物学上的分级树.图

python数据结构与算法 39 树的遍历

树的遍历 在学习完成树的基本结构以后,我们开始研究一些树的应用模式.访问树的全部节点,一般有三种模式,这些模式的不同之处,仅在于访问节点的顺序不同.我们把这种对节点的访问称为"遍历",这三种遍历模式叫做前序.中序和后序.下面我们对遍历模式作更仔细的定义,同时研究使用这延续模式的例子. 前序遍历 在前序遍历中,先访问根节点,然后用递归方式前序遍历它的左子树,最后递归方式前序遍历右子树. 中序遍历 在中序遍历中,先递归中序遍历左子树,然后访问根节点,最后递归中序遍历右子树. 后序遍历 在后

python数据结构与算法 38 分析树

分析树 树的结构完成以后,该是时候看看它能做点什么实事儿了.这一节里,我们研究一下分析树.分析树能够用于真实世界的结构表示,象语法或数学表达式一类的. 图1 一个简单语句的分析树 图1所示是一个简单语句的层级结构,把语句表示为树结构可以让我们用子树来分析句子的组成部分. 图2 ((7+3)?(5?2))的分析树 我们也可以把数学表达式如((7+3)?(5?2))表示为分析树,如图2.此前我们研究过完全括号表达式,这个表达式表达了什么呢?我们知道乘法的优先级比加减要高,但因为括号的关系,在做乘法之