Hark的数据结构与算法练习之归并排序

算法说明:

归并排序的思路就是分而治之,将数组中的数字递归折半进行排序。 递归到最底层就只剩下有两个数字进行比较,再从底层往下进行排序合并。最终得出结果。

同样,语言描述可能对于不知道这个算法的人来说,理解的比较吃力,所以还是举个例子来简单说明一下。

首先,测试数据是int[] arrayData = { 5, 9, 6, 7, 4, 1, 2, 3, 8 }; 一共是9个元素。

然后拿visio画图,来对于归并排序的分而治之进行一下简单的剖析。

整体排序流程大概就是如上图了。 首先先是递归拆分,递归拆分到最底层后,再进行排序,如果参考下边的代码的话,那么Sort方法就是在往最底层递归,Merge方法就是在进行合并。

另外吐个嘈,上边那个图画的很累啊……

时间复杂度:

O(nlgn)

空间复杂度:

O(n+lgn)

代码:

语言:Java

/*
 * 归并排序
 */
public class MergeSort {
	public static void main(String[] args) {
		int[] arrayData = { 5, 9, 6, 7, 4, 1, 2, 3, 8 };
		int[] arrayResult = MergeSortMethod(arrayData);
		for (int integer : arrayResult) {
			System.out.print(integer);
			System.out.print(" ");
		}
	}

	public static int[] MergeSortMethod(int[] arrayData) {
		int[] arrayResult = new int[arrayData.length];
		Sort(arrayData, 0, arrayData.length - 1, arrayResult);
		return arrayResult;
	}

	public static void Sort(int[] arraySource, int leftIndex, int rightIndex,
			int[] arrayResult) {
		if (leftIndex < rightIndex) {
			int middleIndex = (leftIndex + rightIndex) / 2;
			Sort(arraySource, leftIndex, middleIndex, arrayResult);
			Sort(arraySource, middleIndex + 1, rightIndex, arrayResult);
			Merge(arraySource, leftIndex, middleIndex, rightIndex, arrayResult);
		}
	}

	// 进到merge时,leftIndex至middleIndex的数据已被排好序了。
	// middleIndex+1至rightIndex的数字也已经被排好序了
	// 所以merge就是把排好序的数字合并到arrayResult中
	public static void Merge(int[] arraySource, int leftIndex, int middleIndex,
			int rightIndex, int[] arrayResult) {
		int i = leftIndex;
		int j = middleIndex + 1;
		int k = 0;
		// leftIndex至middleIndex 与 middleIndex+1至rightIndex
		// 进行比较,左右两个数组哪个先循环完毕就跳出while
		while (i <= middleIndex && j <= rightIndex) {
			if (arraySource[i] <= arraySource[j]) {
				arrayResult[k++] = arraySource[j++];
			} else {
				arrayResult[k++] = arraySource[i++];
			}
		}

		while (i <= middleIndex) {
			arrayResult[k++] = arraySource[i++];
		}

		while (j <= rightIndex) {
			arrayResult[k++] = arraySource[j++];
		}

		for (int l = 0; l < k; l++) {
			arraySource[leftIndex + l] = arrayResult[l];
		}
	}
}

结果:

9 8 7 6 5 4 3 2 1

时间复杂度论证:Merge方法的时间复杂度是n ,然后Sort方法因为是二叉树性质的递归,所以时间复杂度是log2n,那么归并排序的复杂度就是O(nlog2n)。  log2n的时间耗费对于数学基础不好的朋友来说可能理解起来很吃力(例如我),所以大家可以参考http://xwrwc.blog.163.com/blog/static/46320003201141582544245/

空间复杂度论证: Merge因为要使用一个临时数组,所以空间复杂度是n。又另因为是递归迭代的,所以递归也占用空间复杂度log2n。所以归并排序的空间复杂度是O(n+log2n)

时间: 2024-10-12 15:47:09

Hark的数据结构与算法练习之归并排序的相关文章

【数据结构与算法】二路归并排序

二路归并排序的时间复杂度是O(n*log2n),空间复杂度是O(n). 代码如下: /** * 源码名称:MergeSort.java * 日期:2014-08-11 * 程序功能:合并排序 * 版权:[email protected] * 作者:A2BGeek */ public class MergeSort { public void mergeSort(int[] in) { int length = in.length; int tmp[] = new int[length]; mer

JavaScript 数据结构与算法之美 - 归并排序、快速排序、希尔排序、堆排序

1. 前言 算法为王. 想学好前端,先练好内功,只有内功深厚者,前端之路才会走得更远. 笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScript ,旨在入门数据结构与算法和方便以后复习. 之所以把归并排序.快速排序.希尔排序.堆排序放在一起比较,是因为它们的平均时间复杂度都为 O(nlogn). 请大家带着问题:快排和归并用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢 ? 来阅读下文. 2. 归并排序(Merge Sort) 思想 排序一个数

数据结构和算法14 之归并排序

本文为博主原创文章,转载请注明出处: http://blog.csdn.net/eson_15/article/details/51193139 归并算法的中心是归并两个已经有序的数组.归并两个有序数组A和B,就生成了第三个数组C,数组C包含数组A和B的所有数据项,并且使它们有序的排列在数组C中.首先我们来看看归并的过程,然后看它是如何在排序中使用的. 假设有两个有序数组,不要求有相同的大小.设数组A有4个数据项,数组B有6个数据项,它们要被归并到数组C中,开始时数组C有10个存储空间,归并过程

Hark的数据结构与算法练习之鸡尾酒排序

算法说明 鸡尾酒排序又叫定向冒泡排序,鸡尾酒搅拌排序,搅拌排序,涟漪排序,回来排序,快乐小时排序. 鸡尾酒排序是交换排序的一种,它是冒泡排序的一个轻微的变种.冒泡是从低向高比较排序,鸡尾酒从低向高,从高向低交换着进行排序.大家看一下代码就知道了. 某些特殊有序数组情况下,鸡尾酒排序是效率略好于冒泡排序,例如: int[] arrayData = { 2, 3, 4, 5, 6, 7, 8, 9, 1 }; 鸡尾酒排序只排序一次就能出结果,而冒泡排序就需要8次才能出结果. 代码 使用的是java

Hark的数据结构与算法练习之地精(侏儒)排序

算法说明 地精排序是交换排序的一种,它是冒泡排序的一种改良,我感觉和鸡尾酒排序挺像的. 不同之处是鸡尾酒排序是从小到大,然后再从大到小切换着排序的.而地精排序是上来先从小到大排序,碰到交换到再从大到小,接着再从小到大进行排序. 举个例子: 对8,6,4,5,1进行升序排序 1.8与6交换,结果是 {6,8,4,5,1} 2.8与4交换,结果是 {6,4,8,5,1} 3.4与6交换,结果是 {4,6,8,5,1} 4.5与8交换,结果是 {4,6,5,8,1} 5.6与5交换,结果是 {4,5,

Hark的数据结构与算法练习之奇偶排序

算法说明 奇偶排序又叫奇偶换位排序,砖排序.它是一种交换排序,也是冒泡的一个变种 顾名思义,奇偶排序,其实就是先循环奇数位,然后将奇数位与偶数位比较计算. 然后再循环偶数位,再和奇数位比较运算.看一下代码大家就明白了. 据wiki所述,这种算法是一种并行算法,个人对这块现在不太理解,没明白这块所谓的并行是什么意思,现在只是完成了一个单机版,将来如果明白了再过来进行补充啦. 代码 使用的是java package hark.sort.exchangesort; /* * 奇偶排序 */ publi

Hark的数据结构与算法练习之Bogo排序

算法说明 Bogo排序是交换排序的一种,它是一种随机排序,也是一种没有使用意义的排序,同样也是一种我觉得很好玩的排序. 举个形象的例子,你手头有一副乱序的扑克牌,然后往天上不停的扔,那么有一定机率会变成有序的. 哈哈,就是这样. 看一下代码大家就知道了. 代码 使用的是java package hark.sort.exchangesort; import java.util.Random; /* * Bogo排序 */ public class BogoSort { public static

Hark的数据结构与算法练习之煎饼排序

算法说明 假设煎锅里边有N个煎饼摞在了一起,它们大小不一并且顺序不一致,我们需要通过拿铲子将它们不停的翻个,进行排序,最终得到一个底下是大的煎饼,上边是小的煎饼的序列.这个排序的过程就是煎饼排序. 这个算法有两种解,一种是普通解,一种是最优解. 普通论证: 例如你的初始煎饼顺序是[2,4,3,1] 然后2与4交换位置,然后4与1交换位置,得出[1,3,2,4]. 然后3与1交换位置,接着3与2交换位置,得出[2,1,3,4]. 最后2与1交换位置,得出结果[1,2,3,4] 通过普通解的过程,我

Hark的数据结构与算法练习之图书馆排序

算法说明 图书馆排序是插入排序的变种,典型的以空间换时间的一种方法.我个人感觉这种思路可以学习借鉴,但直接使用的场景应该不大. 我们知道,真正的插入排序通常往前边插入元素后,我们要把后边所有的元素后移.而图书馆排序的思路就是将每个元素后边都预留N个空间(例如预留10个元素空间),这样往某个元素前插入时,在预留空间足够的前题下,只会移动少少几个的元素. 代码 因为4月要考试,所以代码暂不写,以后有时间时补上 参考 http://www.cnblogs.com/kkun/archive/2011/1