【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学

【BZOJ4559】[JLoi2016]成绩比较

Description

G系共有n位同学,M门必修课。这N位同学的编号为0到N-1的整数,其中B神的编号为0号。这M门必修课编号为0到M-1的整数。一位同学在必修课上可以获得的分数是1到Ui中的一个整数。如果在每门课上A获得的成绩均小于等于B获得的成绩,则称A被B碾压。在B神的说法中,G系共有K位同学被他碾压(不包括他自己),而其他N-K-1位同学则没有被他碾压。D神查到了B神每门必修课的排名。这里的排名是指:如果B神某门课的排名为R,则表示有且仅有R-1位同学这门课的分数大于B神的分数,有且仅有N-R位同学这门课的分数小于等于B神(不包括他自己)。我们需要求出全系所有同学每门必修课得分的情况数,使其既能满足B神的说法,也能符合D神查到的排名。这里两种情况不同当且仅当有任意一位同学在任意一门课上获得的分数不同。你不需要像D神那么厉害,你只需要计算出情况数模10^9+7的余数就可以了。

Input

第一行包含三个正整数N,M,K,分别表示G系的同学数量(包括B神),必修课的数量和被B神碾压的同学数量。第二行包含M个正整数,依次表示每门课的最高分Ui。第三行包含M个正整数,依次表示B神在每门课上的排名Ri。保证1≤Ri≤N。数据保证至少有1种情况使得B神说的话成立。N<=100,M<=100,Ui<=10^9

Output

仅一行一个正整数,表示满足条件的情况数模10^9+7的余数。

Sample Input

3 2 1
2 2
1 2

Sample Output

10

题解:本题可以分为两部分处理,答案等于两部分的方案数之积。

第一部分是在碾压K个人的前提下,所有人每门课的分数与B神分数的大小关系的方案数。不难想到容斥,用f[i]表示至少碾压了i个人的方案数,那么$f[i]=C_{n-1}^i\prod\limits_{j=1}^mC_{n-i-1}^{Rj-1}$。答案=至少碾压K个人-至少碾压K+1个人+至少碾压K+2个人。。。所以$ans1=\sum\limits_{i=K}^n(-1)^{K-i}C_i^kf[i]$。

第二部分是在已经确定所有人每门课与B神的相对关系的情况下,每个人得分的方案数。我们可以先分别计算每门课的方案数,最后将其乘起来。设当前课B神的排名为R,总分为U。一个比较暴力的方法就是我们枚举B神的得分x,那么方案数就是$x^{n-R}(U-x)^{R-1}$。所以这门课的总方案数就是:

$\sum\limits_{x=1}^Ux^{n-R}(U-x)^{R-1}\\=\sum\limits_{x=1}^U\sum\limits_{k=0}^{R-1}(-1)^kx^{n-1-k}U^k\\=\sum\limits_{k=0}^{R-1}(-1)^kU^k\sum\limits_{x=1}^Ux^{n-1-k}$

所以现在问题就在于如何快速求$\sum\limits_{i=1}^si^k$,我们设这个东西=g[k]。下面这步非常神:我们观察这个式子

$(s+1)^k-s^k=\sum\limits_{j=0}^{k-1}C_k^js^j\\s^k-(s-1)^k=\sum\limits_{j=0}^{k-1}C_k^j(s-1)^j\\...\\2^k-1^k=\sum\limits_{j=0}^{k-1}C_k^j1^j$

等式两边分别求和

$\sum\limits_{i=1}^s(i+1)^k-i^k=\sum\limits_{i=1}^{s}\sum\limits_{j=0}^{k-1}C_k^ji^j\\(s+1)^k-1=\sum\limits_{j=0}^{k-1}C_k^j\sum\limits_{i=1}^si^j=\sum\limits_{j=0}^{k-1}C_k^jg[j]$

将g[k-1]放到左面即可得

$g[k-1]=\frac {(s+1)^k-1-\sum\limits_{j=0}^{k-2}C_k^jg[j]} {C_k^{k-1}}$

递推求出g[k]即可。

时间复杂度$O(n^3)$。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll P=1000000007;

int n,m,K;
ll ans1,ans2;
int R[110];
ll c[110][110],f[110],U[110],g[110];
inline ll pm(ll x,ll y)
{
	ll z=1;
	while(y)
	{
		if(y&1)	z=z*x%P;
		x=x*x%P,y>>=1;
	}
	return z;
}
inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<‘0‘||gc>‘9‘)	{if(gc==‘-‘)	f=-f;	gc=getchar();}
	while(gc>=‘0‘&&gc<=‘9‘)	ret=ret*10+gc-‘0‘,gc=getchar();
	return ret*f;
}
int main()
{
	n=rd(),m=rd(),K=rd(),ans2=1;
	int i,j,k;
	for(i=0;i<=max(n,m);i++)
	{
		c[i][0]=1;
		for(j=1;j<=i;j++)	c[i][j]=(c[i-1][j-1]+c[i-1][j])%P;
	}
	for(i=1;i<=m;i++)	U[i]=rd();
	for(i=1;i<=m;i++)	R[i]=rd();
	for(i=n-1;i>=K;i--)
	{
		f[i]=c[n-1][i];
		for(j=1;j<=m;j++)	f[i]=f[i]*c[n-i-1][n-R[j]-i]%P;
		ans1=(ans1+(((i^K)&1)?-1:1)*f[i]*c[i][K]%P+P)%P;
	}
	for(i=1;i<=m;i++)
	{
		ll tmp=0;
		g[0]=U[i];
		for(k=1;k<=n;k++)
		{
			g[k]=(pm(U[i]+1,k+1)-1+P)%P;
			for(j=0;j<k;j++)	g[k]=(g[k]-c[k+1][j]*g[j]%P+P)%P;
			g[k]=g[k]*pm(c[k+1][k],P-2)%P;
		}
		for(j=0;j<=R[i]-1;j++)	tmp=(tmp+((j&1)?-1:1)*c[R[i]-1][j]*pm(U[i],R[i]-j-1)%P*g[n-R[i]+j]%P+P)%P;
		ans2=ans2*tmp%P;
	}
	printf("%lld",ans1*ans2%P);
	return 0;
}
时间: 2024-10-15 05:08:20

【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学的相关文章

bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较

http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名的分数安排方案数 g[i]的求法: 枚举B神这门课x分,则有n-Ri个人的分数<=x ,Ri-1个人的分数>x Ui 上限是1e9,但是g[i] 是一个关于Ui 的n次多项式,所以可以用拉格朗日插值法来求 递推 f[i][j]: 假设f[i-1][w] 转移到了f[i][j],j>=w 前i

[CTS2019]随机立方体(容斥+组合数学)

这题七次方做法显然,但由于我太菜了,想了一会发现也就只会这么多,而且别的毫无头绪.发现直接做不行,那么,容斥! f[i]为至少i个极值的方案,然后这里需要一些辅助变量,a[i]表示选出i个三维坐标均不相同的i个极大值的方案数,g[i]表示i个极大的数任意一个至少有一维坐标相同的点的个数,h[i]表示g[i]的极值可以同时存在的方案数,那么有f[i]=C(nml,g[i])a[i]h[i](nml-g[i])!. a[i]很容易求得,就是(∏(n-j)(m-j)(l-j))/i!,其中j∈[0,i

bzoj4559 [JLOI2016]成绩比较 拉格朗日插值

题目描述 G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数. 如果在每门课上A获得的成绩均小于等于B获得的成绩,则称A被B碾压.在B神的说法中,G系共有K位同学被他碾压(不包括他自己),而其他N-K-1位同学则没有被他碾压.D神查到了B神每门必修课的排名. 这里的排名是指:如果B神某门课的排名为R,则表示有且仅有R-1位同学这门课的分数大于B神的分数,有且仅有N-R位

bzoj4559: [JLoi2016]成绩比较

感谢丁爷爷教我做这个题的后半部分. 首先,运用一发容斥原理,求出所有人与B神每门课分数相对关系的不同方案数. 这个似乎大(wo)家(lan)都(de)会(hui)了(yi),我就不说了,详见代码里的f. 然后,我们就需要计算每门课每个人的分数的方案数.对于每一门课,我们分别计算,然后把它们乘起来. 方便起见,令总分为s,名次为rk. 设B神的分数为x,则方案数为x^(n-rk)*(s-x)^(rk-1) 展开得到c(rk-1,0)*s^(rk-1)*x^(n-rk)-c(rk-1,1)*s^(r

hdu - 4790 - Just Random(容斥 + 组合数学)

题意:在 [a, b] 取一个整数 x,在 [c, d] 取一个整数 y,求满足 (x + y) % p = m 的 (x, y) 的对数(0 <= a <= b <= 10 ^ 9, 0 <=c <= d <= 10 ^ 9, 0 <= m < p <= 10 ^ 9). 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4790 -->>2013年成都区赛最后一题,当时TLE6次无果....加

CF 317 A. Lengthening Sticks(容斥+组合数学)

传送门:点我 A. Lengthening Sticks time limit per test 1 second You are given three sticks with positive integer lengths of a, b, and c centimeters. You can increase length of some of them by some positive integer number of centimeters (different sticks ca

4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status][Discuss] Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M- 1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数.如果在每门课上A获得的成绩均小于等于B获 得的成绩,则称A被B碾压.在B

bzoj4558[JLoi2016]方 容斥+count

4558: [JLoi2016]方 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 452  Solved: 205[Submit][Status][Discuss] Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点

HDU 5155 Harry And Magic Box(组合数学+容斥)

Problem Description One day, Harry got a magical box. The box is made of n*m grids. There are sparking jewel in some grids. But the top and bottom of the box is locked by amazing magic, so Harry can't see the inside from the top or bottom. However, f