作者:王燚光
链接:https://www.zhihu.com/question/33270495/answer/93424104
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数、Executor数、core数目的关系。
输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为Block。
当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片,称为InputSplit,注意InputSplit不能跨越文件。
随后将为这些输入分片生成具体的Task。InputSplit与Task是一一对应的关系。
随后这些具体的Task每个都会被分配到集群上的某个节点的某个Executor去执行。
- 每个节点可以起一个或多个Executor。
- 每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
- 每个Task执行的结果就是生成了目标RDD的一个partiton。
作者:王燚光
链接:https://www.zhihu.com/question/33270495/answer/93424104
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
时间: 2024-11-06 09:48:25