【BZOJ2595】[Wc2008]游览计划 斯坦纳树

【BZOJ2595】[Wc2008]游览计划

Description

Input

第一行有两个整数,N和 M,描述方块的数目。 
接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点;
否则表示控制该方块至少需要的志愿者数目。 相邻的整数用 (若干个) 空格隔开,
行首行末也可能有多余的空格。

Output

由 N + 1行组成。第一行为一个整数,表示你所给出的方案
中安排的志愿者总数目。 
接下来 N行,每行M 个字符,描述方案中相应方块的情况: 
z  ‘_’(下划线)表示该方块没有安排志愿者; 
z  ‘o’(小写英文字母o)表示该方块安排了志愿者; 
z  ‘x’(小写英文字母x)表示该方块是一个景点; 
注:请注意输出格式要求,如果缺少某一行或者某一行的字符数目和要求不
一致(任何一行中,多余的空格都不允许出现) ,都可能导致该测试点不得分。

Sample Input

4 4
0 1 1 0
2 5 5 1
1 5 5 1
0 1 1 0

Sample Output

6
xoox
___o
___o
xoox

HINT

对于100%的数据,N,M,K≤10,其中K为景点的数目。输入的所有整数均在[0,2^16]的范围内

题解:学了一发斯坦纳树。

用f[S][i][j]表示已经连通的景点状态为S,当前处于(i,j)的最小花费,那么转移方程如下:

f[S][i][j]=min{f[S‘][i][j]+f[S^S‘][i][j]-a[i][j]}
f[S][i][j]=min{f[S][i‘][j‘]+a[i][j]}
第一个方程相当于枚举子集,而第二个方程存在环,所以采用最短路解决。于是我们先枚举子集,每更新一次都跑一边最短路即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
int n,m,K,cnt,ans,last;
int f[1<<10][12][12],v[12][12],pre[1<<10][12][12],inq[12][12],p[12],Log[1<<10],ref[1<<10],vis[12][12];
int dx[]={1,0,-1,0},dy[]={0,1,0,-1};
queue<int> qx,qy;
inline void spfa(int S,int x,int y)
{
	qx.push(x),qy.push(y);
	int i,tx,ty;
	while(!qx.empty())
	{
		x=qx.front(),y=qy.front(),qx.pop(),qy.pop(),inq[x][y]=0;
		for(i=0;i<4;i++)
		{
			tx=x+dx[i],ty=y+dy[i];
			if(tx>=0&&ty>=0&&tx<n&&ty<m&&f[S][tx][ty]>f[S][x][y]+v[tx][ty])
			{
				f[S][tx][ty]=f[S][x][y]+v[tx][ty],pre[S][tx][ty]=x*m+y;
				if(!inq[tx][ty])	inq[tx][ty]=1,qx.push(tx),qy.push(ty);
			}
		}
	}
}
void dfs(int S,int i,int j)
{
	vis[i][j]=1;
	if(pre[S][i][j]==12345)	return ;
	if(pre[S][i][j]<0)	dfs(-pre[S][i][j],i,j),dfs(S^(-pre[S][i][j]),i,j);
	else	dfs(S,pre[S][i][j]/m,pre[S][i][j]%m);
}
int main()
{
	scanf("%d%d",&n,&m);
	int i,j,x,y;
	memset(f,0x3f,sizeof(f));
	for(i=0;i<n;i++)	for(j=0;j<m;j++)	scanf("%d",&v[i][j]);
	for(i=0;i<n;i++)	for(j=0;j<m;j++)	if(!v[i][j])	f[1<<K][i][j]=0,pre[1<<K][i][j]=12345,spfa(1<<K,i,j),K++;
	for(i=0;i<K;i++)	Log[1<<i]=i;
	for(x=1;x<(1<<K);x++)
	{
		for(cnt=0,i=x;i;i-=i&-i)	p[cnt++]=i&-i;
		for(y=1;y<(1<<cnt);y++)
		{
			ref[y]=ref[y^(y&-y)]|p[Log[y&-y]];
			for(i=0;i<n;i++)	for(j=0;j<m;j++)	if(f[ref[y]][i][j]+f[x^ref[y]][i][j]-v[i][j]<f[x][i][j])
				f[x][i][j]=f[ref[y]][i][j]+f[x^ref[y]][i][j]-v[i][j],pre[x][i][j]=-ref[y],spfa(x,i,j);
		}
	}
	ans=1<<30;
	for(i=0;i<n;i++)	for(j=0;j<m;j++)	if(f[(1<<K)-1][i][j]<ans)	ans=f[(1<<K)-1][i][j],last=i*m+j;
	dfs((1<<K)-1,last/m,last%m);
	printf("%d\n",ans);
	for(i=0;i<n;i++)
	{
		for(j=0;j<m;j++)
		{
			if(!v[i][j])	putchar(‘x‘);
			else	if(vis[i][j])	putchar(‘o‘);
			else	putchar(‘_‘);
		}
		puts("");
	}
	return 0;
}//4 4 0 1 1 0 2 5 5 1 1 5 5 1 0 1 1 0
时间: 2024-10-14 02:31:36

【BZOJ2595】[Wc2008]游览计划 斯坦纳树的相关文章

BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2030  Solved: 986[Submit][Status][Discuss] Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点:否则表示控制该方块至少需要的志愿者数目. 相邻的整数用 (若干个) 空格隔开,行首行末也可能有多余的空格. Outpu

BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树

[题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即可. [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <set> #include <map> #include

BZOJ 2595 Wc2008 游览计划 斯坦纳树

题目大意:给定一个矩阵,有一些关键点,每个格子有权值,选择一些格子使所有关键点连通,求最小权值和 传说中的斯坦纳树- - 感觉不是很难理解的样子 枚举连通的状态,对于每个状态先对每个位置枚举子集进行合并,然后对这个状态的分层图进行SPFA 看了几分代码还是ZKY写的比较简洁- - 此外就是终于能通过操作符重载访问结构体里的三维数组了- - 我真是太丧病了233 #include <cstdio> #include <cstring> #include <iostream>

bzoj2595 [Wc2008]游览计划

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2595 [题解] 斯坦纳树模板题.学了一发斯坦纳树. 对于一般的斯坦纳树,是 给出一些点和一些关键点和边,要求选择权值和最小的连通块使得关键点连通. 那么一般我们用f(x,status)表示在x,状态为status的最小权值和. 本题我们采用f(i,j,status)表示在(i,j),状态为status的最小权值和. 一开始权值就是题目给的,如果是景点那么在对应的标号的status赋值即可.

【BZOJ2595】【Wc2008】游览计划、斯坦纳树

题解:斯坦纳树,实现神马的在代码里面有还看得过去的注释. 代码: #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define N 15 #define inf 0x3f3f3f3f using namespace std; const int dx[]={0,0,1,-1}; const int dy[

【BZOJ 2595】2595: [Wc2008]游览计划 (状压DP+spfa,斯坦纳树?)

2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1572  Solved: 739 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点:否则表示控制该方块至少需要的志愿者数目. 相邻的整数用 (若干个) 空格隔开,行首行末也可能有多余的空格. Output 由 N

BZOJ 2595: [Wc2008]游览计划 [DP 状压 斯坦纳树 spfa]【学习笔记】

传送门 题意:略 论文 <SPFA算法的优化及应用> http://www.cnblogs.com/lazycal/p/bzoj-2595.html 本题的核心就是求斯坦纳树: Steiner Tree: Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as terminals, the Steiner tree problem in g

BZOJ_2595_[Wc2008]游览计划_斯坦纳树

题意: 分析: 斯坦纳树裸题,有几个需要注意的地方 给出矩阵,不用自己建图,但枚举子集转移时会算两遍,需要减去当前点的权值 方案记录比较麻烦,两边的转移都需要记录,最后dfs找方案会比较容易理解 代码: #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> using namespace std; #define N 110 #define LL long l

[WC2008]游览计划 「斯坦那树模板」

斯坦那树 百度释义 斯坦纳树问题是组合优化问题,与最小生成树相似,是最短网络的一种.最小生成树是在给定的点集和边中寻求最短网络使所有点连通.而最小斯坦纳树允许在给定点外增加额外的点,使生成的最短网络开销最小. 即最小斯坦那树即为并非选择所有的结点,而是选择一部分结点,为保证它们连通,且求解最小开销 题解 斯坦那树模板 发现直接表示点的存在性没有意义 设函数 \(f[i][state]\) 表示:对于点 \(i\),其它结点与其连通情况 那么有两种转移 其一.由其子集转移 \[f[i][state