day 10 形态学处理 膨胀

#-*- coding:utf-8 -*-

#1.导入包
import cv2
import numpy as np

#2.导入图片
img = cv2.imread(‘home.jpg‘,0)

#3.设置卷积核 5x5矩形卷积核
kernel = np.ones((5,5),np.uint8)
print(kernel)

kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
print(kernel2)

#4.膨胀操作
dilation = cv2.dilate(img,kernel,iterations=1)
                      #第1参数:原图片
                      #第2参数:卷积核
                      #第3参数:只要5x5卷积核内中心像素有一个1,那就是1

#5.显示图片,并关闭
cv2.imshow(‘dilation‘,dilation)

cv2.waitKey(0)
cv2.destroyAllWindows()

    

[[1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]]

[[0 0 1 0 0]
 [1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]
 [0 0 1 0 0]]

  

时间: 2024-11-09 10:36:50

day 10 形态学处理 膨胀的相关文章

opencv学习之路(14)、形态学之膨胀腐蚀(一)

一.膨胀腐蚀概述(对高亮部分进行操作) 二.膨胀 三.腐蚀 四.代码 1.查看结构元素 1 #include<opencv2/opencv.hpp> 2 #include<iostream> 3 using namespace cv; 4 using namespace std; 5 6 void main(){ 7 Mat element=getStructuringElement(MORPH_RECT,Size(5,5)); 8 Mat element2=getStructur

opencv-图像形态学之膨胀腐蚀

转自:https://blog.csdn.net/poem_qianmo/article/details/23710721 一.原理 1.1 形态学概述 形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构.而我们图像处理中指的形态学,往往表示的是数学形态学.下面一起来了解数学形态学的概念. 数学形态学(Mathematical morphology) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论.其基本的运算包括:二值腐

机器学习进阶-图像形态学操作-膨胀操作 1.cv2.dilate(进行膨胀操作)

1.cv2.dilate(src, kernel, iteration) 参数说明: src表示输入的图片, kernel表示方框的大小, iteration表示迭代的次数 膨胀操作原理:存在一个kernel,在图像上进行从左到右,从上到下的平移,如果方框中存在白色,那么这个方框内所有的颜色都是白色 代码: 1.读取带有毛躁的图片 2.使用cv2.erode进行腐蚀操作 3.使用cv2.dilate进行膨胀操作 import cv2 import numpy as np # 1.读入图片 img

形态学腐蚀膨胀操作

1.腐蚀操作 增强图像的暗部(图像矩阵中数值更小的部分),滤波得到的新像素点为滤波器内最小的值,也就是用最暗的点代替滤波器内的锚点 erode(src,dst,kernel,Point,epoch_num) 参数分别为:输入图像,输出图像,滤波器,锚点(一般为Point(-1,-1)),迭代次数(默认为一次) 2.膨胀操作 增强图像的亮部(图像矩阵中数值更大的部分),滤波得到的心像素点为滤波器内的最大值,也就是用最亮的点代替滤波器内的锚点 dilate(src,dst,kernel,Point,

学习 opencv---(9)形态学图像处理(一):膨胀和腐蚀

本篇文章中,我们一起探究了图像处理中,最基本的形态学运算--膨胀与腐蚀.浅墨在文章开头友情提醒,用人物照片做腐蚀和膨胀的素材图片得到的效果会比较惊悚,毁三观的,不建议尝试.......... 一.理论与概念讲解--从现象到本质 1.1 形态学概述 形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构,而我们图像处理中指的形态学,往往表示的是数学形态学,下面一起来了解数学形态学的概念. 数学形态学(Mathematical morphology)是一门建立在

python实现图像膨胀和腐蚀算法

如果您觉得本文不错!记得点赞哦! 一. 图像形态学简介: 经验之谈:形态学操作一般作用于二值图像,来连接相邻的元素(膨胀)或分离成独立的元素(侵蚀).腐蚀和膨胀是针对图片中的白色(即前景)部分! 二. 图像形态学操作 膨胀和腐蚀的算法: 膨胀算法: 对于待操作的像素 f(x,y),不论 f(x,y-1) .f(x,y+1) .f(x-1,y) .f(x+1,y) 哪一个为255,则 f(x,y)=255. 膨胀操作 ↑ 换句话说:将待操作的图像像素与以下  4-近邻矩阵 相乘,结果大于255的话

OPENCV形态学操作1

形态学操作是指基于形状的一系列图像处理操作,包括膨胀,腐蚀,二值化,开运算,闭运算,顶帽算法,黑帽算法,形态学梯度等,最基本的形态学操作就是膨胀和腐蚀. 一.膨胀 首先需要明确一个概念,膨胀和腐蚀都是针对于图像中较亮的区域而言的,膨胀就是亮的区域变多了,而腐蚀就是暗的区域变多了. 膨胀的功能主要有消除噪声,分割出独立的图像元素,在图像操作的时候,有时候需要对图像中的某些形状进行检测,而这些形状相互连接在一起,不好分开检测,膨胀就能切开这些形状(很小的连接位置),或者图像中有很小块的黑斑,或许是相

Python下opencv使用笔记(六)(图像的形态学转换)

形态学一般是使用二值图像,进行边界提取,骨架提取,孔洞填充,角点提取,图像重建等等.常用的形态学操作时腐蚀与膨胀,在他们的基础上演变出一些变体,包括开运算.闭运算.梯度等等.形态学一般是对二值图像进行的操作. 下面贴几个比较好的介绍图像形态学方面的博客 图像处理基本算法-形态学 图像的形态学处理 (一)腐蚀 关于腐蚀就是将图像的边界腐蚀掉,或者说使得图像整体上看起来变瘦了.它的操作原理就是卷积核沿着图像滑动,如果与卷积核对应的原图像的所有像素值都是1,那么中心元素保持原来的值,否则就变为0.这对

3.形态学

#导入工具包 from imutils import * Erosion腐蚀其原理是在原图的小区域内取局部最小值,其函数是cv2.erode().这个核也叫结构元素,因为形态学操作其实也是应用卷积来实现的,结构元素可以是矩形/椭圆/十字形,可以用cv2.getStructuringElement()来生成不同形状的结构元素,比如: # 矩形 kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5)) print(kernel1) [[1