矩阵十题【五】 VOJ1049 HDU 2371 Decode the Strings

题目链接:https://vijos.org/p/1049

题目大意:顺次给出m个置换,反复使用这m个置换对初始序列进行操作,问k次置换后的序列。m<=10, k<2^31。

首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们需要执行这个置换k/m次(取整,若有余数则剩下几步模拟即可)。注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:

置换k/m次就相当于在前面乘以k/m个这样的矩阵。我们可以二分计算出该矩阵的k/m次方,再乘以初始序列即可。做出来了别忙着高兴,得意之时就是你灭亡之日,别忘了最后可能还有几个置换需要模拟。

注意:这m个置换对应的矩阵相乘的时候必须左乘

代码如下:

///https://vijos.org/p/1049
#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
const int MAX = 105;

struct Matrix
{
    int v[MAX][MAX];
};

int n,m,k;  //分别代表的是每个置换的长度
            //置换的一组的个数
            //以及一共置换的操作

Matrix mtAdd(Matrix A, Matrix B)        // 求矩阵 A + B
{
    int i, j;
    Matrix C;
    for(i = 0; i < n; i ++)
        for(j = 0; j < n; j ++)
            C.v[i][j]=(A.v[i][j]+B.v[i][j]);
    return C;
}

Matrix mtMul(Matrix A, Matrix B)        // 求矩阵 A * B
{
    int i, j, k;
    Matrix C;
    for(i = 0; i < n; i ++)
        for(j = 0; j < n; j ++)
        {
            C.v[i][j] = 0;
            for(k = 0; k < n; k ++)
                C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]);
        }
    return C;
}

Matrix mtPow(Matrix A, int k)           // 求矩阵 A ^ k
{
    if(k == 0)
    {
        memset(A.v, 0, sizeof(A.v));
        for(int i = 0; i < n; i ++)
            A.v[i][i] = 1;
        return A;
    }
    if(k == 1) return A;
    Matrix C = mtPow(A, k / 2);
    if(k % 2 == 0)
        return mtMul(C, C);
    else
        return mtMul(mtMul(C, C), A);
}

void out(Matrix A)
{
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        cout<<A.v[i][j]<<" ";
        cout<<endl;
    }
    cout<<endl;
}

int  main ()
{
    int mp[15][105];
    scanf("%d%d%d",&n,&m,&k);
    int shang=k/m;
    int yushu=k%m;
    Matrix ans;
    Matrix rig;
    Matrix B;
    Matrix tem;

    for(int i=0;i<n;i++) rig.v[0][i]=i+1;    //out(rig);

    memset(ans.v,0,sizeof(ans.v));
    for(int i=0;i<n;i++) ans.v[i][i]=1;

    for(int i=0;i<m;i++)
    {
        memset(B.v,0,sizeof(B.v));
        for(int j=0;j<n;j++)
        scanf("%d",&mp[i][j]),B.v[mp[i][j]-1][j]=1;
        //out(B);
        ans=mtMul(ans,B);
        if(i==yushu-1) tem=ans;
    }
    //out(ans);
    //out(tem);
    ans=mtPow(ans,shang);
    ans=mtMul(ans,tem);
    //out(ans);
    ans=mtMul(rig,ans);
    for(int i=0;i<n;i++) cout<<ans.v[0][i]<<" ";
    return 0;
}

hdu 2371 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2371

题目大意:给出n 和m,给出n个数,代表一个置换,接着一个字符串s,s经过m次置换后变成另一个字符串,

现在给出经过m次置换后的字符串,输出原始字符串s

比如:5 3

2 3 1 5 4

hello

需经过3次置换,则"hello" -> "elhol" -> "lhelo" -> "helol"

思路:将置换规则取反(将p[i]位置上的数num[i]变成p[num[i]]上的数,例如,num:  2 3 1 5 4  变成  num:  3 1 2 5 4

p: 1 2 3 4 5               p:  1 2 3 4 5  )

然后将m次置换合并起来,即算出这m个置换的乘积(即origin^m),然后乘以初始序列[1 2 3 4 ....n],然后输出对应位置的字符即可。

注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:

m次置换就相当于前面乘以m个这样的矩阵,用矩阵快速幂即可。

因为没有看清楚题意,第二组样例一直过不了,好心酸.......

///https://vijos.org/p/1049
#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
const int MAX = 105;

struct Matrix
{
    int v[MAX][MAX];
};

int n,p;

Matrix mtAdd(Matrix A, Matrix B)        // 求矩阵 A + B
{
    int i, j;
    Matrix C;
    for(i = 0; i < n; i ++)
        for(j = 0; j < n; j ++)
            C.v[i][j]=(A.v[i][j]+B.v[i][j]);
    return C;
}

Matrix mtMul(Matrix A, Matrix B)        // 求矩阵 A * B
{
    int i, j, k;
    Matrix C;
    for(i = 0; i < n; i ++)
        for(j = 0; j < n; j ++)
        {
            C.v[i][j] = 0;
            for(k = 0; k < n; k ++)
                C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]);
        }
    return C;
}

 Matrix mtPow(Matrix origin,int k)  //矩阵快速幂
 {
     int i;
     Matrix res;
     memset(res.v,0,sizeof(res.v));
     for(i=1;i<=n;i++)
         res.v[i][i]=1;
     while(k)
     {
         if(k&1)
             res=mtMul(res,origin);
         origin=mtMul(origin,origin);
         k>>=1;
     }
     return res;
 }

void out(Matrix A)
{
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        cout<<A.v[i][j]<<" ";
        cout<<endl;
    }
    cout<<endl;
}

int  main ()
{
    while(~scanf("%d%d",&n,&p))
    {
        if(n==0&&p==0) break;
    int num[90];
    Matrix A;
    Matrix B;
    memset(B.v,0,sizeof(B.v));
    for(int i=0;i<n;i++) B.v[0][i]=i;
    memset(A.v,0,sizeof(A.v));

    for(int i=0;i<n;i++) scanf("%d",&num[i]),A.v[i][num[i]-1]=1;
    //out(A);
    getchar();
    char c[90];
    for(int i=0;i<n;i++) scanf("%c",&c[i]);

    Matrix ans;
    ans=mtPow(A,p);
    //out(ans);
    ans=mtMul(B,ans);
    for(int i=0;i<n;i++) cout<<c[ans.v[0][i]];
    cout<<endl;
    }
}

矩阵十题【五】 VOJ1049 HDU 2371 Decode the Strings

时间: 2024-11-08 18:28:30

矩阵十题【五】 VOJ1049 HDU 2371 Decode the Strings的相关文章

矩阵十题【三】 HDU 1588 Gauss Fibonacci

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1588 题目大意:先要知道一组斐波那契数列 i 0 1 2 3 4 5 6 7 f(i) 0 1 1 2 3 5 8 13 下面给你一组数: k,b,n,M 现在知道一组公式g(i)=k*i+b:(i=0,1,2,3...n-1) 让你求出 f(g(i)) 的总和(i=01,2,3,...,n-1),比如给出的数据是2 1 4 100 2*0+1=1   f(1)=1 2*1+1=3   f(3)=2

矩阵十题【八】 HDU 1715 A Simple Math Problem

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题目大意: If x < 10   ,则  f(x) = x. If x >= 10 ,则  f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 * f(x-10); 给出k,m和a0~a9,求f(k)%m,  k<2*10^9 , m < 10^5 这是一个递推式,故可以用矩阵乘法来求 和上题类似,具体思路过程见上题

矩阵十题【九】 HDU 2157 How many ways??

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2157 题目大意:给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值 本来以为是DFS搜索,发现用矩阵也可以做!~ 好神奇. 把 给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j.令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就 等于从点i到点j恰好经过2条边的路径数(枚举k为中转点).类似地,C*A的第i行第j列就表示从i到j

矩阵十题【四】 HDU 3306 Another kind of Fibonacci

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3306 题目大意:A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2):给定三个值N,X,Y求S(N):S(N) = A(0)^2 +A(1)^2+--+A(n)^2. 学了这几题,还是不太很懂,后来看题解,渐渐也是懂了一点. 题目的意思是求出A(0)^2 +A(1)^2+--+A(n)^2 考虑1*4 的矩阵[s[n-2]

矩阵十题【二】 poj 1575 Tr A 【矩阵】

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据.接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容. 一个矩阵快速幂的裸题. 题解: #include<iostr

矩阵十题【一】

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=298 题目大意:已知n个点(n<10000),现在对所有点进行以下操作: 平移一定距离(M),相对X轴上下翻转(X),相对Y轴左右翻转(Y),坐标缩小或放大一定的倍数(S),所有点对坐标原点逆时针旋转一定角度(R). 操作的次数不超过1000000次,求最终所有点的坐标. 首先我们要知道矩阵乘法的概念. 在数学中,一个矩阵说穿了就是一个二维数组.一个n行m列的矩阵可以乘以一个m行p列的矩

矩阵十题【十】 poj 3613 Cow Relays

题目链接:http://poj.org/problem?id=3613 题目大意: 输入N,T,S,E,N表示要走的边数,T表示一共有几条边,S表示开始的点,E表示结束的点 给出一张无向连通图,求S到E经过N条边的最短路. N (2 ≤ N ≤ 1,000,000) T (2 ≤ T ≤ 100) (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000) 1 ≤ lengthi  ≤ 1,000 题目主要的思想就是用矩阵的乘法模拟出Floyd进行运算,是个很好的题目. //k步最短路

矩阵十题【六】 poj3070 Fibonacci

题目链接:http://poj.org/problem?id=3070 题目大意:给定n和10000,求第n个Fibonacci数mod 10000 的值,n不超过2^31.结果保留四位数字. 很简单的题,和之前做过的相比简单很多了. 构造最简单的斐波那契数列矩阵. #include<iostream> #include<cstring> #include<stdio.h> using namespace std; const int MAX = 2; struct M

矩阵十题【七】vijos 1067 Warcraft III 守望者的烦恼

题目链接:https://vijos.org/p/1067 题目大意:给你一个k以及n,k代表最多走的步数,n代表一共要走的步数. 问一共有多少种方法,结果mod7777777 题目意思是很明了,具体的公式也能推出来 状态转移方程为:f[n]=f[n-1]+f[n-2]+....f[n-k]. f[0]=1 当k=1,   f[1]=1; f[2]=f[1]=1; f[3]=f[2]=1; f[4]=f[3]=1; 当k=2,   f[1]=1; f[2]=f[1]+f[0]=2; f[3]=f