八大排序之快速排序算法-python实现

快排就是折中时间和空间的一个算法,可以说是较为高效的算法,平时用用他没啥大问题。

自己也看到个比较形象生动的例子,为了让大家能够看的比较清楚,我就直接转过来给大家看了哈!但是我使用python实现的:

注意以下除了实现代码,其他为转发,详见页末!

假设我们现在对“6  1  2 7  9  3  4  5 10  8”这个10个数进行排序。首先在这个序列中随便找一个数作为基准数(不要被这个名词吓到了,就是一个用来参照的数,待会你就知道它用来做啥的了)。为了方便,就让第一个数6作为基准数吧。接下来,需要将这个序列中所有比基准数大的数放在6的右边,比基准数小的数放在6的左边,类似下面这种排列:

3  1  2 5  4  6  9 7  10  8

在初始状态下,数字6在序列的第1位。我们的目标是将6挪到序列中间的某个位置,假设这个位置是k。现在就需要寻找这个k,并且以第k位为分界点,左边的数都小于等于6,右边的数都大于等于6。想一想,你有办法可以做到这点吗?

排序算法显神威

方法其实很简单:分别从初始序列“6  1  2 7  9  3  4  5 10  8”两端开始“探测”。先从右往左找一个小于6的数,再从左往右找一个大于6的数,然后交换他们。这里可以用两个变量i和j,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵i”和“哨兵j”。刚开始的时候让哨兵i指向序列的最左边(即i=1),指向数字6。让哨兵j指向序列的最右边(即=10),指向数字。

首先哨兵j开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵j先出动,这一点非常重要(请自己想一想为什么)。哨兵j一步一步地向左挪动(即j--),直到找到一个小于6的数停下来。接下来哨兵i再一步一步向右挪动(即i++),直到找到一个数大于6的数停下来。最后哨兵j停在了数字5面前,哨兵i停在了数字7面前。

现在交换哨兵i和哨兵j所指向的元素的值。交换之后的序列如下:

6  1  2  5  9 3  4  7  10  8

到此,第一次交换结束。接下来开始哨兵j继续向左挪动(再友情提醒,每次必须是哨兵j先出发)。他发现了4(比基准数6要小,满足要求)之后停了下来。哨兵i也继续向右挪动的,他发现了9(比基准数6要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下:

6  1  2 5  4  3  9  7 10  8

第二次交换结束,“探测”继续。哨兵j继续向左挪动,他发现了3(比基准数6要小,满足要求)之后又停了下来。哨兵i继续向右移动,糟啦!此时哨兵i和哨兵j相遇了,哨兵i和哨兵j都走到3面前。说明此时“探测”结束。我们将基准数6和3进行交换。交换之后的序列如下:

3  1 2  5  4  6  9 7  10  8

到此第一轮“探测”真正结束。此时以基准数6为分界点,6左边的数都小于等于6,6右边的数都大于等于6。回顾一下刚才的过程,其实哨兵j的使命就是要找小于基准数的数,而哨兵i的使命就是要找大于基准数的数,直到i和j碰头为止。

OK,解释完毕。现在基准数6已经归位,它正好处在序列的第6位。此时我们已经将原来的序列,以6为分界点拆分成了两个序列,左边的序列是“3  1 2  5  4”,右边的序列是“9  7  10  8”。接下来还需要分别处理这两个序列。因为6左边和右边的序列目前都还是很混乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理6左边和右边的序列即可。现在先来处理6左边的序列现吧。

左边的序列是“3  1  2 5  4”。请将这个序列以3为基准数进行调整,使得3左边的数都小于等于3,3右边的数都大于等于3。好了开始动笔吧

如果你模拟的没有错,调整完毕之后的序列的顺序应该是:

2  1  3  5  4

OK,现在3已经归位。接下来需要处理3左边的序列“2 1”和右边的序列“5 4”。对序列“2 1”以2为基准数进行调整,处理完毕之后的序列为“1 2”,到此2已经归位。序列“1”只有一个数,也不需要进行任何处理。至此我们对序列“2 1”已全部处理完毕,得到序列是“1 2”。序列“5 4”的处理也仿照此方法,最后得到的序列如下:

1  2  3 4  5  6 9  7  10  8

对于序列“9  7  10  8”也模拟刚才的过程,直到不可拆分出新的子序列为止。最终将会得到这样的序列,如下

1  2  3 4  5  6  7  8 9  10

到此,排序完全结束。细心的同学可能已经发现,快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。下面上个霸气的图来描述下整个算法的处理过程。

这是为什么呢?

快速排序之所比较快,因为相比冒泡排序,每次交换是跳跃式的。每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。这样在每次交换的时候就不会像冒泡排序一样每次只能在相邻的数之间进行交换,交换的距离就大的多了。因此总的比较和交换次数就少了,速度自然就提高了。当然在最坏的情况下,仍可能是相邻的两个数进行了交换。因此快速排序的最差时间复杂度和冒泡排序是一样的都是O(N2),它的平均时间复杂度为O(NlogN)。

实现算法:

1、排序脚本-quicksort.py

 1 #/usr/bin/python
 2 #coding:utf-8
 3 import os
 4
 5
 6 def change_func(a,left,right):
 7    i=left
 8    j=int(right)-1
 9    k=a[left]
10    left=left+1
11    while (left<right):
12        while ((left<right) and (a[right]>k)):
13            right=right-1
14        while ((left<right) and (a[left]<k)):
15            left=left+1
16        if(left<right):
17           temp=a[left]
18           a[left]=a[right]
19           a[right]=temp
20    if (left<=right and k>a[left]):
21        a[i]=a[left]
22        a[left]=k
23        return left
24
25 def quick_sort(a,left,right):
26      m=int(right)-left
27      if(m<=0):
28          return
29      pro=change_func(a,left,right)
30      quick_sort(a,left,pro-1)
31      quick_sort(a,left+1,right)
32      return a

2、主函数调用-controlmain.py

 1 #!/usr/bin/python
 2 #coding:utf-8
 3 import os
 4 from quicksort import *
 5
 6 totalnum = raw_input("please input the number of the sequence:")
 7 print "the total number is :"+totalnum
 8 s =[]
 9 for i in range(int(totalnum)):
10    s.append(int(raw_input("请输入第%d个数字 :"%(i+1))))
11 print "列表为:"+str(s)
12 totalnum=int(totalnum)-1
13 s=quick_sort(s,0,totalnum)
14 print s

参考资料:http://developer.51cto.com/art/201403/430986.htm

时间: 2024-10-06 20:51:34

八大排序之快速排序算法-python实现的相关文章

【排序】快速排序算法

特别说明: 对于算法,重在理解其思想.解决问题的方法,思路.因此,以下内容全都假定待排序序列的存储结构为:顺序存储结构. 快速排序介绍 快速排序算法相较于插入.冒泡.选择排序来说而言要稍微复杂些.其主要用的是分治思想,将问题划分为更小的子问题来解决.因此,快速排序的思想其实很简单.在(目前的)时间复杂度为  的排序算法中,快速排序的系数是最小的.因此,在平均情况下,快速排序算法是被认为最快的一种排序算法(要不怎么称之为快速排序呢?). 快速排序算法在大数据量情况下,实践证明在平均情况下的排序算法

数据结构之排序算法Java实现(4)—— 交换类排序之快速排序算法

快速排序算法属于"交换类"的排序,它的效率主要跟数据分布是否对称有关. 升序排序: /** * 快速排序 * 升序排序 */ @Override public <T extends Comparable<? super T>> void sortByAsc(T[] data) { if(data == null || data.length <= 1){ return; } partitionSortByAsc(data, 0, data.length -

八大排序之快速排序

body { background-color: white } .markdown-body { min-width: 200px; max-width: 760px; margin: 0 auto; padding: 20px; color: #333; overflow: hidden; font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif; font

排序_快速排序算法

/*每次以数组第一个数为基数,从数组两端往中间找,小于基数的数放在数组的左边,大于它的数放在数组的右边,当i == j的时候,查找结束,将基数赋值到这个位置,这个数在数组中的位置就是这个,确定了.然后从这个数的左边和右边开始递归,直到所有的数都排完序.时间复杂度:nlog2n(最好,平均).n2(最坏)*/#include<cstdio>#include<iostream>using namespace std;void sort(int ri[],int l,int r){   

希尔排序(插入排序)-八大排序三大查找汇总(5)

基本思想 该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序. 稳定性 由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的. 时间复杂度 希尔排序的时间复杂度取决于步长的选择. 平均情况下,

排序——选择排序、快速排序

知识点总结报告 知识点: 选择排序 (原理)基本思想:第i趟排序开始时,当前有序区和无序区分别为R[0...i-1]和R[i..n-1](0<=i<n-1),该趟排序是从当前无序区中选出关键字最小的元素R[k],将它与无序区的第一个元素R[i]交换,使R[0..i]和R[i+1..n-1]分别变为新的有序区和新的无序区. 因为每趟排序均使有序区中增加了一个元素,且有序区中元素的关键字均不大于无序区中元素的关键字,即第i趟排序之后R[0..i]的所有关键字均小于等于R[i+1..n-1]中的所有

算法基础——经典八大排序算法的Java及Python实现

概述 八大排序算法不用多说了,程序员算法基础必须要掌握的,现在总结一下加深记忆.下图是这八大排序算法的分类.名称.时间空间复杂度,以及稳定性. 代码 以下是经典八大排序算法的Java及Python代码,都是基于经典算法书籍<算法导论>里的伪代码实现的,我在关键语句部分附上了注释. 按照上图中的顺序分别介绍八大排序算法的实现(升序),前面是Java,后面是Python.Java的排序函数写在了一个类里,Python的排序函数则直接写出来了. 直接插入排序 public class InsertS

Python实现八大排序算法

Python实现八大排序算法,具体内容如下 1.插入排序描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的.个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2).是稳定的排序方法.插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素).在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中. 代码实现 def insert

八大排序算法python实现(转)

一.概述   排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短: 二.算法实现   1.插入排序-直接插入排序(Straight Insertion Sort) 基