部分背包问题的贪心算法正确性证明

一,部分背包问题介绍

首先介绍下0-1背包问题。假设一共有N件物品,第 i 件物品的价值为 Vi ,重量为Wi,一个小偷有一个最多只能装下重量为W的背包,他希望带走的物品越有价值越好,请问:他应该选择哪些物品?

0-1背包问题的特点是:对于某件(更适合的说法是:某类)物品,要么被带走(选择了它),要么不被带走(没有选择它),不存在只带走一部分的情况。

而部分背包问题则是:可以带走一部分。即,部分背包问题可带走的物品 是可以 无限细分的。(连续与离散的区别)

可以把0-1背包问题中的物品想象的一个金子,你要么把它带走,要么不带走它;而部分背包问题中的物品则是一堆金粉末,可以取任意部分的金粉末

二,部分背包问题的贪心算法

部分背包问题可以用贪心算法求解,且能够得到最优解。

贪心策略是什么呢?将物品按单位重量 所具有的价值排序。总是优先选择单位重量下价值最大的物品。

单位重量所具有的价值:Vi / Wi

举个例子:假设背包可容纳50Kg的重量,物品信息如下:

物品 i      重量(Kg)      价值           单位重量的价值

1             10          60                 6

2             20          100               5

3             30          120               4

按照我们的贪心策略,单位重量的价值排序: 物品1 > 物品2 > 物品3

因此,我们尽可能地多拿物品1,直到将物品1拿完之后,才去拿物品2.....

最终贪心选择的结果是这样的:物品1全部拿完,物品2也全部拿完,物品3拿走10Kg(只拿走了物品3的一部分!!!)

这种选择获得的价值是最大的。在(三)会给出证明。

而对于0-1背包问题,如果也按“优先选择单位重量下价值最大的物品”这个贪心策略,那么,在拿了物品1和物品2之后,就不能在拿物品3了。因为,在拿了物品1和物品2之后,背包中已经装了10+20=30Kg的物品了,已经装不下物品3了(50-30 < 30)(0-1背包:一件物品要么拿,要么不拿,否能只拿一部分),此时得到的总价值是 160。而如果拿物品2和物品3,得到的价值为220。这说明,该贪心策略对0-1背包问题,不能求得最优解。

三,部分背包问题的贪心策略的正确性证明

贪心策略是:总是优先选择单位重量下价值最大的物品

正确性证明 是:使用该贪心策略,可以获得最优解。在这里,最优解就是带走的物品价值最大。

证明思路:先考察一个全局最优解,然后对该解加以修改(一般是采用“剪枝”技巧),使其采用贪心选择,这个选择将原问题变成一个相似的、但是更小的问题。

先假设 物品集合S={W1,W2....Wn}已经按 单位重量价值从小到大排好序了。

并假设 一个全局最优解是:S(i)={Wi1,Wi2,.....Win}。Wi1,Wi2,.....Win是有序的。对于贪心选择而言,总是会优先 选择 Wn 的物品,当Wn 没有后,再选择Wn-1 .....

如果Win = Wn 问题已经得证。因为,我们的最优解S(i)中,已经包含了贪心选择。只要继续归纳下去,Wi(n-1) 就是 Wn-1 ....

如果Win != Wn 运用剪枝技巧,剪掉Win 并 贴上 W此时,得到的是一个更优的解(因为价值更大了 ,Wn > Win)。因为,Wn 是单位重量价值最高的那个物品啊,我们的贪心选择应该选择它,但是这里的最优解S(i)却没有选择它,于是我们用剪枝技巧,将它加入到S(i)中去,并把S(i)中的Win除去。

这就证明了,如果用贪心策略来进行选择,得到的是最优解。从而证明了贪心算法的正确性。

其实,也就是证明了一定存在一个最优解,这个最优解就是由贪心选择组成的。

四,参考资料

从 活动选择问题 看动态规划和贪心算法的区别与联系 文章中讲到的 “活动选择问题”的贪心策略的正确性证明。二者证明思路基本一致。

http://www.cnblogs.com/hapjin/p/5573419.html

某种 找换硬币问题的贪心算法的正确性证明

时间: 2024-10-16 22:15:57

部分背包问题的贪心算法正确性证明的相关文章

背包问题:0/1背包问题 普通背包问题(贪心算法只适用于普通背包问题)

//sj和vj分别为第j项物品的体积和价值,W是总体积限制. //V[i,j]表示从前i项{u1,u2,…,un}中取出来的装入体积为j的背包的物品的最大价值. 第一种:0/1背包问题 最大化 ,受限于  1)若i=0或j=0,  V[i,j] = 0 2)若j<si, V[i,j] = V[i-1,j] 3)若i>0且j>=si, V[i,j] = Max{V[i-1,j],V[i-1,j-si]+vi} 第二种:背包问题:在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部

背包问题的贪心算法

1. 贪心算法的基本原理: 贪心算法总是作出在当前看来最好的选择.也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择.当然,希望贪心算法得到的最终结果也是整体最优的.虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解.如单源最短路经问题,最小生成树问题等.在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似.? 贪心算法求解的问题一般具有两个重要性质:贪心选择性质和最优子结构性质. (1)所谓贪心选择性质是指所求问题的

数据结构与算法学习之路:背包问题的贪心算法和动态规划算法

一.背包问题描述: 有N种物品和一个重量为M的背包,第i种物品的重量是w[i],价值是p[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包重量,且价值总和最大. 二.解决方法: 1.贪心算法:贪心算法基于的思想是每一次选择都作当前最好的选择,这样最后的结果虽然不一定是最优解,但是也不会比最优解差很多. 举个例子说明可能好懂一些:一帮基友去聚餐,菜是一份一份上的,我每一次夹菜都只夹牛肉/海鲜吃,可能到最后我吃的牛肉/海鲜很多,但不一定代表我吃掉的东西的总价值最高,但是相对来说价值也很高

背包问题(贪心算法)

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法还是比较好理解的一个算法,以前我也是这样认为的,感觉贪心就是每一步都做到最优解就可以了,但是后来结合问题发现自己的理解存在着一些问题.贪心算法比较经典的题目之一就是单源最短路径问题,这个问题在一些步骤上面我想了很久,有些细节想不通.这个问题以后有机会再讲.本次讲一讲背包问题. 背包问题就是有若干物品,每个物品有自己的价值和重量.背包有总重

贪心算法正确性证明(转载from刘子韬)

这里主要是介绍一种证明贪心算法是最优的一种方法:Exchange Argument (不知道应该怎么翻译到中文,交换参数?感觉听起来挺别扭的,不像是一个方法的名字~o(╯□╰)o) Exchange Argument的主要的思想也就是 先假设 存在一个最优的算法和我们的贪心算法最接近,然后通过交换两个算法里的一个步骤(或元素),得到一个新的最优的算法,同时这个算法比前一个最优算法更接近于我们的贪心算法,从而得到矛盾,原命题成立. 下面来看一个更为formal的解释: 步骤: Step0: 给出贪

某种 找换硬币问题的贪心算法的正确性证明

一,问题介绍 最近一直在看贪心算法的正确性证明(如何证明贪心算法获得的解一定是最优解),感觉“剪枝”技巧用得比较多.再看了下<算法导论>中贪心算法一章里面的一个练习---找换硬币问题.这个问题对于某些 面值的硬币 是有最优解的,故记录下其中的一些证明思路. 考虑用最少的硬币数 来找 n 分钱的问题,假设每个硬币的值都是整数. 如果可换的硬币的单位是 c 的幂,也就是 c0,c1,... ,ck ,其中整数 c>1,k>=1 证明贪心算法总可以产生一个最优解. 二,找换硬币的贪心策略

数据结构之贪心算法(背包问题的思考)-(十)

贪心策略.关于贪心算法的思考,思考过程都放在代码中了. package com.lip.datastructure; /** *贪心算法:装箱问题的思考 * @author Lip *装箱问题可以是时间调问题的延伸,当一个箱子没有容积限制,那么就是时间调度问题 *在时间调度问题中:存在两个可以讨论的问题.1.平均最短时间 2.总的最短时间 *这两个问题都和装箱问题中问题如此类似. */ /* * 上面是我理解的装箱问题,本来是想说背包问题的 * 背包问题的描述:有N件物品和一个容量为V的背包.第

[C++] 贪心算法之活动安排、背包问题

一.贪心算法的基本思想 在求解过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解. 从贪心算法的定义可以看出,贪心算法不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解.如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一. 二.贪心算法的基本要素 (1)最优子结构性质 (2)贪心选择性质(局部最优选择) 三.贪心算法实例 1.活动安排 设有n个活

算法导论笔记——第十六章 贪心算法

通常用于最优化问题,我们做出一组选择来达到最优解.每步都追求局部最优.对很多问题都能求得最优解,而且速度比动态规划方法快得多. 16.1 活动选择问题 按结束时间排序,然后选择兼容活动. 定理16.1 考虑任意非空子问题Sk,令am是Sk中结束时间最早的活动,则am在Sk的某个最大兼容活动子集中. 16.2 贪心算法原理 设计贪心算法步骤: 1>将最优化问题转化为这样的形式:对其做出一次选择后,只剩下一个子问题需要求解. 2>证明作出贪心选择后,原问题总是存在最优解,即贪心选择总是安全的. 3