bzoj3240: [Noi2013]矩阵游戏

Description

婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储)。她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式:

F[1][1]=1
F[i,j]=a*F[i][j-1]+b (j!=1)
F[i,1]=c*F[i-1][m]+d (i!=1)
递推式中a,b,c,d都是给定的常数。

现在婷婷想知道F[n][m]的值是多少,请你帮助她。由于最终结果可能很大,你只需要输出F[n][m]除以1,000,000,007的余数。

用 十进制快速幂 计算 一次函数的多层嵌套,时间复杂度O(logn+logm)。

#include<cstdio>
#include<cstring>
typedef long long i64;
const int P=1e9+7;
struct num{
    char a[1000077];
    int l;
    void R(){
        scanf("%s",a);
        l=strlen(a);
        int p=l-1;
        for(--a[p];a[p]<‘0‘;a[p]+=10,--a[--p]);
    }
}n,m;
struct F{
    int a,b;
    F operator()(F f)const{
        return (F){int(i64(a)*f.a%P),int((i64(a)*f.b+b)%P)};
    }
    void R(){
        scanf("%d%d",&a,&b);
    }
}v1,v2;
F operator^(F a,const num&n){
    F v=(F){1,0},ts[10],u;
    ts[0]=v;
    for(int i=1;i<10;++i)ts[i]=a(ts[i-1]);
    for(int i=0;i<n.l;++i){
        u=v=v(v);
        u=u(u),u=u(u);
        v=u(v(ts[n.a[i]-‘0‘]));
    }
    return v;
}
int main(){
    n.R();m.R();
    v1.R(),v2.R();
    v1=v1^m;
    v2=v1(v2(v1)^n);
    printf("%d\n",(v2.a+v2.b)%P);
    return 0;
}
时间: 2024-12-10 16:55:10

bzoj3240: [Noi2013]矩阵游戏的相关文章

3240: [Noi2013]矩阵游戏

Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式: F[1][1]=1F[i,j]=a*F[i][j-1]+b (j!=1)F[i,1]=c*F[i-1][m]+d (i!=1)递推式中a,b,c,d都是给定的常数. 现在婷婷想知道F[n][m]的值是多少,请你帮助她.由于最终结果可能很大,你只需要输出F[n

bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化

3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 613  Solved: 256[Submit][Status] Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式: F[1][1]=1F[i,j]=a*F[i][j-1]+

BZOJ 3240 [Noi2013] 矩阵游戏 题解

转载请注明:http://blog.csdn.net/jiangshibiao/article/details/24594825 [原题] 3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 336  Solved: 158 [Submit][Status] Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质

【bzoj3240】 Noi2013—矩阵游戏

http://www.lydsy.com/JudgeOnline/problem.php?id=3240 (题目链接) 题意 F[1][1]=1 F[i,j]=a*F[i][j-1]+b (j!=1) F[i,1]=c*F[i-1][m]+d (i!=1) 求解F[n][m],a,b,c,d为常数. Solution 原来费马小定理对于矩阵乘法同样适用..设a为一矩阵,p为质数则: 正好这里的模数1000000007为质数,那么把n,m模上(p-1)后进行矩阵快速幂即可.用来优化的矩阵很好构造,

bzoj 3240: [Noi2013]矩阵游戏

Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式: F[1][1]=1 F[i,j]=aF[i][j-1]+b (j!=1) F[i,1]=cF[i-1][m]+d (i!=1) 递推式中a,b,c,d都是给定的常数. 现在婷婷想知道F[n][m]的值是多少,请你帮助她.由于最终结果可能很大,你只需要输出F[

【BZOJ】【3240】【NOI2013】矩阵游戏

十进制快速幂+矩阵乘法+常数优化 听说这题还可以强行算出来递推式……然后乘乘除除算出来…… 然而蒟蒻选择了一个比较暴力的做法= = 我们发现这个递推的过程是线性的,所以可以用矩阵乘法来表示,$x=a*x+b$这样一个递推式我们可以这样表示:$$\begin{bmatrix} x& 1 \end{bmatrix} * \begin{bmatrix} a& 0 \\ b& 1 \end{bmatrix} $$ 那么我们可以令$s_1$表示×a+b,$s_2$表示×c+d,那么我们有$$

bzoj1059:[ZJOI2007]矩阵游戏【二分图匹配】

Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作:行交换操作:选择矩阵的任意两行,交换这两行(即交换对应格子的颜色)列交换操作:选择矩阵的任意行列,交换这两列(即交换对应格子的颜色)游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑色.对于某些关卡,小Q百思不得其解,以致他开始怀疑这些关卡是不是根本就是无

P1129 [ZJOI2007]矩阵游戏

洛谷—— P1129 [ZJOI2007]矩阵游戏 题目描述 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏.矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作: 行交换操作:选择矩阵的任意两行,交换这两行(即交换对应格子的颜色) 列交换操作:选择矩阵的任意两列,交换这两列(即交换对应格子的颜色) 游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑色. 对于某些关卡,小Q百思不

1059: [ZJOI2007]矩阵游戏

1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2154  Solved: 1053[Submit][Status] Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏.矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的).每次可以对该矩阵进行两种操作:行交换操作:选择矩阵的任意两行,交换这两行(即交换对应格子的颜色)列交换操作:选择矩