如果只有行和列的覆盖,那么可以直接做,但现在有左上到右下的覆盖.
考虑对行和列的覆盖情况做一个卷积,然后就有了x+y的非覆盖格子数.
然后用骑士的左上到右下的覆盖特判掉那些x+y的格子就可以了.
注意题意,Row是从上到下来的,被坑得好惨.
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<ctime> #include<string> #include<iomanip> #include<algorithm> #include<map> using namespace std; #define LL long long #define FILE "dealing" #define up(i,j,n) for(LL i=j;i<=n;++i) #define db double #define ull unsigned long long #define eps 1e-10 #define pii pair<LL,LL> LL read(){ LL x=0,f=1,ch=getchar(); while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=(x<<1)+(x<<3)+ch-‘0‘;ch=getchar();} return f*x; } const LL maxn=402000,maxm=20000,mod=(LL)(1e9+7+0.1),limit=(LL)(1e6+1),inf=(LL)(1e9); bool cmax(LL& a,LL b){return a<b?a=b,true:false;} bool cmin(LL& a,LL b){return a>b?a=b,true:false;} namespace FFT{ db pi=acos(-1.0); struct cp{ db x,y; cp(db x=0,db y=0):x(x),y(y){} cp operator+(const cp& b){return cp(x+b.x,y+b.y);} cp operator-(const cp& b){return cp(x-b.x,y-b.y);} cp operator*(const cp& b){return cp(x*b.x-y*b.y,x*b.y+y*b.x);} }w[maxn],a[maxn],b[maxn]; LL R[maxn],H,L; void FFT(cp* a,LL f){ up(i,0,L-1)if(i<R[i])swap(a[i],a[R[i]]); for(LL len=2;len<=L;len<<=1){ LL l=len>>1; cp wn(cos(pi/l),f*sin(pi/l)); up(i,1,l-1)w[i]=w[i-1]*wn; for(LL st=0;st<L;st+=len) for(LL k=0;k<l;k++){ cp x=a[st+k],y=w[k]*a[st+k+l]; a[st+k]=x+y;a[st+k+l]=x-y; } } if(f==-1)up(i,0,L-1)a[i].x/=L; } void solve(LL* c,LL* d,LL n,LL m,LL* ch){ n++,m++; up(i,0,n-1)a[i].x=c[i],a[i].y=0; up(i,0,m-1)b[i].x=d[i],b[i].y=0; for(H=0,L=1;L<n+m-1;H++)L<<=1; up(i,n,L)a[i].x=a[i].y=0; up(i,m,L)b[i].x=b[i].y=0; up(i,1,L)R[i]=(R[i>>1]>>1)|((i&1)<<(H-1)); w[0].x=1; FFT(a,1);FFT(b,1); up(i,0,L-1)a[i]=a[i]*b[i]; FFT(a,-1); up(i,1,n+m-1)ch[i]=(LL)(a[i].x+0.5); } }; LL n,m,K; LL a[maxn],b[maxn],c[maxn],d[maxn]; int main(){ freopen(FILE".in","r",stdin); freopen(FILE".out","w",stdout); LL T=read(); up(j,1,T){ n=read(),m=read(),K=read(); up(i,1,n)a[i]=1; up(i,1,m)b[i]=1; up(i,1,n+m)d[i]=0; up(i,1,K){ LL x=n-read()+1,y=read(); a[x]=0,b[y]=0; d[x+y]=1; } FFT::solve(a,b,n,m,c); LL ans=0; up(i,1,n+m)if(c[i]&&!d[i])ans+=c[i]; printf("Case %lld: %lld\n",j,ans); } return 0; }
时间: 2024-10-03 21:54:15