笔者在这里给出二分查找的两种实现方式。
一. 第一种是健忘版的二分查找,即不管是否已经找到target,查找算法都继续对表进行再分,直到剩下的表的长度为1。
递归实现如下:
Error_code recursive_binary_1(const Ordered_list &the_list, const Key &target, int bottom, int top, int &position) { Record data; if (bottom < top) { int mid = (bottom+top)/2; the_list.retrieve(mid, data); //获取mid位置的值并赋给data //注意下面两个语句不是对称的 if (data < target) return recursive_binary_1(the_list, target, mid+1, top, position); else return recursive_binary_1(the_list, target, bottom, mid, position); } else if (top < bottom) return not_present; else { position = bottom; the_list.retrieve(position, data); if (data == target) return success; else return not_present; } }
非递归实现如下:
Error_code recursive_binary_1(const Ordered_list &the_list, const Key &target, int &position) { Record data; int bottom = 0, top = the_list.size()-1; while (bottom < top) { int mid = (bottom+top)/2; the_list.retrieve(mid, data); if (data < target) bottom = mid+1; else top = mid; } else if (top < bottom) return not_present; else { position = bottom; the_list.retrieve(position, data); if (data == target) return success; else return not_present; } }
需要注意的是健忘版的二分查找在二分时bottom和top的更新不是对称的,上面的条件总是会把mid放入两个区间中较低的一个,即在整个查找过程中bottom<=mid<top。上面的二分查找是一种简单形式的二分查找,它做了很多不必要的重复,因为它不能再继续重复前识别已找到了目标。
二. 第二种是识别想等的二分查找,即在继续二分前判断当前的值是否等于target,减少不必要的重复。
递归实现如下:
Error_code recursive_binary_2(const Ordered_list &the_list, const Key &target, int bottom, int top, int &position) { Record data; if (bottom <= top) { int mid = (bottom+top)/2; the_list.retrieve(mid, data); //获取mid位置的值并赋给data if (data == target) return { position = mid; success; } //下面的递归语句是对称的了 if (data < target) return recursive_binary_2(the_list, target, mid+1, top, position); else return recursive_binary_2(the_list, target, bottom, mid-1, position); } return not_present; }
非递归实现如下:
Error_code recursive_binary_1(const Ordered_list &the_list, const Key &target, int &position) { Record data; int bottom = 0, top = the_list.size()-1; while (bottom <= top) { position = (bottom+top)/2; the_list.retrieve(position, data); if (data == target) return success; if (data < target) bottom = position+1; else top = position-1; } return not_present; }
时间: 2024-10-04 03:48:57