NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(通常是元素是数字)。在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。
例如,在3D空间一个点的坐标 [1, 2, 3]
是一个秩为1的数组,因为它只有一个轴。那个轴长度为3.又例如,在以下例子中,数组的秩为2(它有两个维度).第一个维度长度为2,第二个维度长度为3.
[[ 1., 0., 0.], [ 0., 1., 2.]]
NumPy的数组类被称作 ndarray 。通常被称作数组。注意numpy.array和标准Python库类array.array并不相同,后者只处理一维数组和提供少量功能。更多重要ndarray对象属性有:
- ndarray.ndim
数组轴的个数,在python的世界中,轴的个数被称作秩
- ndarray.shape
数组的维度。这是一个指示数组在每个维度上大小的整数元组。例如一个n排m列的矩阵,它的shape属性将是(2,3),这个元组的长度显然是秩,即维度或者ndim属性
- ndarray.size
数组元素的总个数,等于shape属性中元组元素的乘积。
- ndarray.dtype
一个用来描述数组中元素类型的对象,可以通过创造或指定dtype使用标准Python类型。另外NumPy提供它自己的数据类型。
- ndarray.itemsize
数组中每个元素的字节大小。例如,一个元素类型为float64的数组itemsiz属性值为8(=64/8),又如,一个元素类型为complex32的数组item属性为4(=32/8).
- ndarray.data
包含实际数组元素的缓冲区,通常我们不需要使用这个属性,因为我们总是通过索引来使用数组中的元素。
>>> from numpy import * >>> a = arange(15).reshape(3, 5) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) >>> a.shape (3, 5) >>> a.ndim 2 >>> a.dtype.name ‘int32‘ >>> a.itemsize 4 >>> a.size 15 >>> type(a) numpy.ndarray >>> b = array([6, 7, 8]) >>> b array([6, 7, 8]) >>> type(b) numpy.ndarray
一、numpy.apply_along_axis
官方文档给的:
numpy.
apply_along_axis
(func1d, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.
Execute func1d(a, *args) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis.
Parameters: |
func1d : function
axis : integer
arr : ndarray
args : any
kwargs : any
|
---|---|
Returns: |
apply_along_axis : ndarray
|
举例:
>>> def my_func(a):#定义了一个my_func()函数,接受一个array的参数 ... """Average first and last element of a 1-D array""" ... return (a[0] + a[-1]) * 0.5 #返回array的第一个元素和最后一个元素的平均值 >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> np.apply_along_axis(my_func, 0, b) array([ 4., 5., 6.]) >>> np.apply_along_axis(my_func, 1, b) array([ 2., 5., 8.])
定义了一个my_func()函数,接受一个array的参数,然后返回array的第一个元素和最后一个元素的平均值,生成一个array:
1 2 3 4 5 6 7 8 9
np.apply_along_axis(my_func, 0, b)意思是说把b按列,传给my_func,即求出的是矩阵列元素中第一个和最后一个的平均值,结果为;
4. 5. 6.
np.apply_along_axis(my_func, 1, b)意思是说把b按行,传给my_func,即求出的是矩阵行元素中第一个和最后一个的平均值,结果为;
2. 5. 8.
二、numpy.linalg.norm
- (1)np.linalg.inv():矩阵求逆
- (2)np.linalg.det():矩阵求行列式(标量)
np.linalg.norm
顾名思义,linalg=linear+algebra,norm则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):
首先help(np.linalg.norm)
查看其文档:
norm(x, ord=None, axis=None, keepdims=False)
这里我们只对常用设置进行说明,x表示要度量的向量,ord表示范数的种类,
>>> x = np.array([3, 4]) >>> np.linalg.norm(x) 5. >>> np.linalg.norm(x, ord=2) 5. >>> np.linalg.norm(x, ord=1) 7. >>> np.linalg.norm(x, ord=np.inf) 4
范数理论的一个小推论告诉我们:?1≥?2≥?∞
三、numpy.expand_dims
主要是把array的维度扩大
numpy.
expand_dims
(a, axis)
举例:
>>> x = np.array([1,2]) >>> x.shape (2,)
shape是求矩阵形状的。
>>> y = np.expand_dims(x, axis=0) >>> y array([[1, 2]]) >>> y.shape (1, 2)
维度扩大,axis=0
>>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,newaxis] >>> y array([[1], [2]]) >>> y.shape (2, 1)
维度扩大,axis=1
参考:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.apply_along_axis.html
http://blog.csdn.net/lanchunhui/article/details/51004387