hash表以及处理冲突的方法

哈希表及处理冲突的方法

哈希法又称散列法、杂凑法以及关键字地址计算法等,相应的表称为哈希表。这种方法的基本思想是:首先在元素的关键字k和元素的存储位置p之间建立一个对应关系f,使得p=f(k),f称为哈希函数。创建哈希表时,把关键字为k的元素直接存入地址为f(k)的单元;以后当查找关键字为k的元素时,再利用哈希函数计算出该元素的存储位置p=f(k),从而达到按关键字直接存取元素的目的。

当关键字集合很大时,关键字值不同的元素可能会映象到哈希表的同一地址上,即 k1≠k2 ,但 H(k1)=H(k2),这种现象称为冲突,此时称k1和k2为同义词。实际中,冲突是不可避免的,只能通过改进哈希函数的性能来减少冲突。

综上所述,哈希法主要包括以下两方面的内容:

1)如何构造哈希函数

2)如何处理冲突。

8.4.1   哈希函数的构造方法

构造哈希函数的原则是:①函数本身便于计算;②计算出来的地址分布均匀,即对任一关键字k,f(k) 对应不同地址的概率相等,目的是尽可能减少冲突。

下面介绍构造哈希函数常用的五种方法。

1. 数字分析法

      如果事先知道关键字集合,并且每个关键字的位数比哈希表的地址码位数多时,可以从关键字中选出分布较均匀的若干位,构成哈希地址。例如,有80个记录,关键字为8位十进制整数d1d2d3…d7d8,如哈希表长取100,则哈希表的地址空间为:00~99。假设经过分析,各关键字中 d4和d7的取值分布较均匀,则哈希函数为:h(key)=h(d1d2d3…d7d8)=d4d7。例如,h(81346532)=43,h(81301367)=06。相反,假设经过分析,各关键字中 d1和d8的取值分布极不均匀, d都等于5,d都等于2,此时,如果哈希函数为:h(key)=h(d1d2d3…d7d8)=d1d8,则所有关键字的地址码都是52,显然不可取。

2. 平方取中法

当无法确定关键字中哪几位分布较均匀时,可以先求出关键字的平方值,然后按需要取平方值的中间几位作为哈希地址。这是因为:平方后中间几位和关键字中每一位都相关,故不同关键字会以较高的概率产生不同的哈希地址。

例:我们把英文字母在字母表中的位置序号作为该英文字母的内部编码。例如K的内部编码为11,E的内部编码为05,Y的内部编码为25,A的内部编码为01, B的内部编码为02。由此组成关键字“KEYA”的内部代码为11052501,同理我们可以得到关键字“KYAB”、“AKEY”、“BKEY”的内部编码。之后对关键字进行平方运算后,取出第7到第9位作为该关键字哈希地址,如图8.23所示。


关键字


内部编码


内部编码的平方值


H(k)关键字的哈希地址


KEYA


11050201


122157778355001


778


KYAB


11250102


126564795010404


795


AKEY


01110525


001233265775625


265


BKEY


02110525


004454315775625


315

图8.23平方取中法求得的哈希地址

3. 分段叠加法

这种方法是按哈希表地址位数将关键字分成位数相等的几部分(最后一部分可以较短),然后将这几部分相加,舍弃最高进位后的结果就是该关键字的哈希地址。具体方法有折叠法移位法。移位法是将分割后的每部分低位对齐相加,折叠法是从一端向另一端沿分割界来回折叠(奇数段为正序,偶数段为倒序),然后将各段相加。例如:key=12360324711202065,哈希表长度为1000,则应把关键字分成3位一段,在此舍去最低的两位65,分别进行移位叠加和折叠叠加,求得哈希地址为105和907,如图8.24所示。

1   2   3                    1   2   3

6   0   3                    3   0   6

2   4   7                    2   4   7

1   1   2                    2   1   1

+)   0   2   0               +)  0   2   0

————————            —————————

1   1   0   5                    9   0   7

(a)移位叠加                    (b) 折叠叠加

图8.24 由叠加法求哈希地址

4. 除留余数法

假设哈希表长为m,p为小于等于m的最大素数,则哈希函数为

h(k)=k  %  p ,其中%为模p取余运算。

例如,已知待散列元素为(18,75,60,43,54,90,46),表长m=10,p=7,则有

h(18)=18 % 7=4    h(75)=75 % 7=5    h(60)=60 % 7=4

h(43)=43 % 7=1    h(54)=54 % 7=5    h(90)=90 % 7=6

h(46)=46 % 7=4

此时冲突较多。为减少冲突,可取较大的m值和p值,如m=p=13,结果如下:

h(18)=18 % 13=5    h(75)=75 % 13=10    h(60)=60 % 13=8

h(43)=43 % 13=4    h(54)=54 % 13=2    h(90)=90 % 13=12

h(46)=46 % 13=7

此时没有冲突,如图8.25所示。

0      1      2     3     4     5      6     7     8     9     10     11    12


54


43


18


46


60


75


90

图8.25  除留余数法求哈希地址

 

5. 伪随机数法

采用一个伪随机函数做哈希函数,即h(key)=random(key)。

在实际应用中,应根据具体情况,灵活采用不同的方法,并用实际数据测试它的性能,以便做出正确判定。通常应考虑以下五个因素 :

l         计算哈希函数所需时间 (简单)。

l         关键字的长度。

l         哈希表大小。

l         关键字分布情况。

l         记录查找频率

8.4.2   处理冲突的方法

通过构造性能良好的哈希函数,可以减少冲突,但一般不可能完全避免冲突,因此解决冲突是哈希法的另一个关键问题。创建哈希表和查找哈希表都会遇到冲突,两种情况下解决冲突的方法应该一致。下面以创建哈希表为例,说明解决冲突的方法。常用的解决冲突方法有以下四种:

1.         开放定址法

这种方法也称再散列法,其基本思想是:当关键字key的哈希地址p=H(key)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,…,直到找出一个不冲突的哈希地址pi ,将相应元素存入其中。这种方法有一个通用的再散列函数形式:

Hi=(H(key)+di)% m   i=1,2,…,n

其中H(key)为哈希函数,m 为表长,di称为增量序列。增量序列的取值方式不同,相应的再散列方式也不同。主要有以下三种:

l         线性探测再散列

dii=1,2,3,…,m-1

这种方法的特点是:冲突发生时,顺序查看表中下一单元,直到找出一个空单元或查遍全表。

l         二次探测再散列

di=12,-12,22,-22,…,k2,-k2    ( k<=m/2 )

这种方法的特点是:冲突发生时,在表的左右进行跳跃式探测,比较灵活。

l         伪随机探测再散列

di=伪随机数序列。

具体实现时,应建立一个伪随机数发生器,(如i=(i+p) % m),并给定一个随机数做起点。

例如,已知哈希表长度m=11,哈希函数为:H(key)= key  %  11,则H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为69,则H(69)=3,与47冲突。如果用线性探测再散列处理冲突,下一个哈希地址为H1=(3 + 1)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 + 2)% 11 = 5,还是冲突,继续找下一个哈希地址为H3=(3 + 3)% 11 = 6,此时不再冲突,将69填入5号单元,参图8.26 (a)。如果用二次探测再散列处理冲突,下一个哈希地址为H1=(3 + 12)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 - 12)% 11 = 2,此时不再冲突,将69填入2号单元,参图8.26 (b)。如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,……..,则下一个哈希地址为H1=(3 + 2)% 11 = 5,仍然冲突,再找下一个哈希地址为H2=(3 + 5)% 11 = 8,此时不再冲突,将69填入8号单元,参图8.26 (c)。

0        1       2      3      4      5       6      7      8       9      10


47


26


60


69

(a) 用线性探测再散列处理冲突

0        1       2      3      4      5       6      7      8       9      10


69


47


26


60

(b) 用二次探测再散列处理冲突

0        1       2      3      4      5       6      7      8       9      10


47


26


60


69

(c) 用伪随机探测再散列处理冲突

图8.26开放地址法处理冲突

从上述例子可以看出,线性探测再散列容易产生“二次聚集”,即在处理同义词的冲突时又导致非同义词的冲突。例如,当表中i, i+1 ,i+2三个单元已满时,下一个哈希地址为i, 或i+1 ,或i+2,或i+3的元素,都将填入i+3这同一个单元,而这四个元素并非同义词。线性探测再散列的优点是:只要哈希表不满,就一定能找到一个不冲突的哈希地址,而二次探测再散列和伪随机探测再散列则不一定。

2.         再哈希法

这种方法是同时构造多个不同的哈希函数:

Hi=RH1(key)  i=1,2,…,k

当哈希地址Hi=RH1(key)发生冲突时,再计算Hi=RH2(key)……,直到冲突不再产生。这种方法不易产生聚集,但增加了计算时间。

3.         链地址法

这种方法的基本思想是将所有哈希地址为i的元素构成一个称为同义词链的单链表,并将单链表的头指针存在哈希表的第i个单元中,因而查找、插入和删除主要在同义词链中进行。链地址法适用于经常进行插入和删除的情况。

例如,已知一组关键字(32,40,36,53,16,46,71,27,42,24,49,64),哈希表长度为13,哈希函数为:H(key)= key % 13,则用链地址法处理冲突的结果如图8.27所示:

图8.27  链地址法处理冲突时的哈希表

 

本例的平均查找长度 ASL=(1*7+2*4+3*1)=1.5

 

4、建立公共溢出区

这种方法的基本思想是:将哈希表分为基本表溢出表两部分,凡是和基本表发生冲突的元素,一律填入溢出表

时间: 2024-11-08 06:31:26

hash表以及处理冲突的方法的相关文章

HashMap解决hash冲突的方法

源码分析 HashMap 采用一种所谓的“Hash 算法”来决定每个元素的存储位置.当程序执行 map.put(String,Obect)方法 时,系统将调用String的 hashCode() 方法得到其 hashCode 值——每个 Java 对象都有 hashCode() 方法,都可通过该方法获得它的 hashCode 值.得到这个对象的 hashCode 值之后,系统会根据该 hashCode 值来决定该元素的存储位置.源码如下: public V put(K key, V value)

解决hash冲突的方法

通过构造性能良好的哈希函数,可以减少冲突,但一般不可能完全避免冲突,因此解决冲突是哈希法的另一个关键问题.创建哈希表和查找哈希表都会遇到冲突,两种情况下解决冲突的方法应该一致.下面以创建哈希表为例,说明解决冲突的方法.常用的解决冲突方法有以下四种: 1.开放定址法 这种方法也称再散列法,其基本思想是:当关键字key的哈希地址p=H(key)出现冲突时,以p为基础,产生另一个哈希地址p1,如果p1仍然冲突,再以p为基础,产生另一个哈希地址p2,-,直到找出一个不冲突的哈希地址pi ,将相应元素存入

PHP核心技术与最佳实践之Hash表冲突

PHP核心技术与最佳实践之Hash表冲突 接着上一篇文章,测试后输出value1value2.当 $ht->insert('key12','value12'); Echo $ht ->find('key12');时, 发现输出value12value12.这是什么原因呢? 这个问题称为Hash表的冲突.由于insert的是字符串,采用的算法是将字符串的ASIIC码相加,按照此方法,冲突产生了.通过打印key12和key1的Hash值,发现他们都为8,也就说,value1和value12同时被存

[数据结构] Hash表、Hash函数及冲突解决

1.Hash表 哈希表(Hash table,也叫散列表),是根据key而直接进行访问的数据结构.也就是说,它通过把key映射到表中一个位置来访问记录,以加快查找的速度.这个映射函数叫做散列函数,存放记录的数组叫做散列表. 以数据中每个元素的关键字K为自变量,通过散列函数H(k)计算出函数值,以该函数值作为一块连续存储空间的的单元地址,将该元素存储到函数值对应的单元中. 哈希表存储的是键值对,其查找的时间复杂度与元素数量多少无关,哈希表在查找元素时是通过计算哈希码值来定位元素的位置从而直接访问元

hash表总结

Hash表也称散列表,也有直接译作哈希表,Hash表是一种特殊的数据结构,它同数组.链表以及二叉排序树等相比较有很明显的区别,它能够快速定位到想要查找的记录,而不是与表中存在的记录的关键字进行比较来进行查找.这个源于Hash表设计的特殊性,它采用了函数映射的思想将记录的存储位置与记录的关键字关联起来,从而能够很快速地进行查找. 1.Hash表的设计思想 对于一般的线性表,比如链表,如果要存储联系人信息: 张三 13980593357 李四 15828662334 王五 13409821234 张

数据结构与算法-hash表

前言 哈希表是一种存放键-值对的数据结构,其中值用来存放我们真正需要的数据,键的主要目的就是为了找到值.哈希表理想情况下,只需要一次hash计算即可找到值数据,但通常情况下我们不需要耗费巨大的额外空间来追求这丝毫的查找速度(要追求低hash冲突率,必然要扩大hash表),我们更希望的是让空间和时间达到某种平衡,这可以通过调节hash函数来解决(装填因子). 装填因子=表中的记录数/哈希表的长度,如果装填因子越小,表明表中还有很多的空单元,则发生冲突的可能性越小:而装填因子越大,则发生冲突的可能性

hash表的建立和查找

(1)冲突处理方法为:顺次循环后移到下一个位置,寻找空位插入.(2)BKDE 字符串哈希unsigned int hash_BKDE(char *str){/* 初始种子seed 可取31 131 1313 13131 131313 etc.. */unsigned int seed = 131;unsigned int hash = 0;while (*str){hash = hash * seed + (*str++);}return (hash & 0x7FFFFFFF);} 选做内容每一

Hash表的C++实现(转)

原文:Hash表(C++实现) 哈希表的几个概念: 映像:由哈希函数得到的哈希表是一个映像. 冲突:如果两个关键字的哈希函数值相等,这种现象称为冲突. 处理冲突的几个方法: 1.开放地址法:用开放地址处理冲突就是当冲突发生时,形成一个地址序列,沿着这个序列逐个深测,直到找到一个“空”的开放地址,将发生冲突的关键字值存放到该地址中去. 例如:hash(i)=(hash(key)+d(i)) MOD m (i=1,2,3,......,k(k<m-1)) d为增量函数,d(i)=d1,d2,d3,.

Hash表的扩容(转载)

Hash表(Hash Table)   hash表实际上由size个的桶组成一个桶数组table[0...size-1] .当一个对象经过哈希之后,得到一个相应的value , 于是我们把这个对象放到桶table[ value ]中.当一个桶中有多个对象时,我们把桶中的对象组织成为一个链表.这在冲突处理上称之为拉链法. 负载因子(load factor)   假设一个hash表中桶的个数为 size , 存储的元素个数为used .则我们称 used / size 为负载因子loadFactor