LINUX下的简单线程池

前言

任何一种设计方式的引入都会带来额外的开支,是否使用,取决于能带来多大的好处和能带来多大的坏处,好处与坏处包括程序的性能、代码的可读性、代码的可维护性、程序的开发效率等。

线程池适用场合:任务比较多,需要拉起大量线程来处理;任务的处理时间相对比较短,按照线程的周期T1(创建阶段)、T2(执行阶段)、T3(销毁阶段)来算,执行阶段仅占用较少时间。

简单的线程池通常有以下功能:预创建一定数量的线程;管理线程任务,当工作线程没有事情可做时休眠自己;销毁线程池。

复杂一些的线程池有额外的调节功能:管理线程池的上限;动态调节工作线程数量,当大量工作请求到来时增加工作线程,工作请求较少时销毁部分线程。

内容部分

这次实现的是一个简单的线程池模型。

首先是线程池的头文件定义:

1 #include<unistd.h>
 2 #include<stdlib.h>
 3 #include<iostream>
 4 #include<string>
 5 #include<string.h>
 6 #include<queue>
 7 #include<errno.h>
 8 #include<pthread.h>
 9 using namespace std;
10 
11 struct  thread_work
12 {   
13     void* (*routine)(void*);
14     void* arg;
15 };
16 
17 struct thread_pool
18 {   
19     bool ShutDown;
20     unsigned int iMaxThreadNum;
21     pthread_mutex_t pool_mutex;
22     pthread_cond_t pool_cond;
23     queue<pthread_t> Pth_IdQueue;
24     queue<thread_work> Pth_workQueue;
25 };
26 
27 thread_pool* thread_pool_create(int iThreadNum);
28 void thread_pool_destroy(thread_pool* thpool);
29 int thread_pool_add_task(thread_pool* thpool, void*(*routine)(void*), void* arg);
30 void* thread_routine(void* arg);

下面是线程池的实现:

1 #include "ThreadPool.h"
  2 
  3 thread_pool* thread_pool_create(int iThreadMaxNum)
  4 {
  5     int iRet = 0;
  6     thread_pool* pool = new thread_pool;
  7     if(NULL == pool)
  8     {
  9         cout << "new thread_pool failed! procedure exit" << endl;
 10         return NULL;
 11     }
 12     pool->iMaxThreadNum = iThreadMaxNum;
 13     pool->ShutDown = false;
 14     if((iRet=pthread_mutex_init(&pool->pool_mutex, NULL)) != 0)
 15     {
 16         cout << __FUNCTION__ << "thread_pool init failed! error: " << strerror(iRet)  << endl;
 17         delete pool;
 18         return NULL;
 19     }
 20     if((iRet=pthread_cond_init(&pool->pool_cond, NULL)) != 0)
 21     {
 22         cout << __FUNCTION__ << "thread_cond init failed! error: " << strerror(iRet) << endl;
 23         delete pool;
 24         return NULL;
 25     }
 26     
 27     for(int i = 0; i < iThreadMaxNum; i++)
 28     {
 29         pthread_t thid = 0;
 30         if((iRet=pthread_create(&thid, NULL, thread_routine, (void*)pool)) != 0)
 31         {
 32             cout << __FUNCTION__ << " pthread_create failed, error: " << strerror(iRet) << endl;
 33             delete pool;
 34             return NULL;
 35         }
 36         else
 37         {
 38             pool->Pth_IdQueue.push(thid);
 39         }
 40     }
 41     return pool;
 42 }
 43 
 44 int thread_pool_add_task(thread_pool* thpool, void*(*routine)(void*), void* arg)
 45 {
 46     if(routine == NULL  || thpool == NULL)
 47         return -1;
 48     thread_work temp;
 49     temp.routine = routine;
 50     temp.arg = arg;
 51     pthread_mutex_lock(&(thpool->pool_mutex));
 52     thpool->Pth_workQueue.push(temp);
 53     pthread_mutex_unlock(&(thpool->pool_mutex));
 54     pthread_cond_signal(&(thpool->pool_cond));
 55     return 0;
 56 }
 57 
 58 void thread_pool_destroy(thread_pool* thpool)
 59 {
 60     if(thpool == NULL)
 61         return;
 62     pthread_mutex_lock(&(thpool->pool_mutex));
 63     thpool->ShutDown = true;
 64     while(!thpool->Pth_workQueue.empty())
 65     {
 66         thpool->Pth_workQueue.pop();
 67     }
 68     pthread_cond_broadcast(&(thpool->pool_cond));
 69     pthread_mutex_unlock(&(thpool->pool_mutex));
 70     while(!thpool->Pth_IdQueue.empty())
 71     {
 72         pthread_join(thpool->Pth_IdQueue.front(), NULL);
 73         thpool->Pth_IdQueue.pop();
 74     }
 75     pthread_mutex_destroy(&(thpool->pool_mutex));
 76     pthread_cond_destroy(&(thpool->pool_cond));
 77     delete thpool;
 78 }
 79 
 80 void* thread_routine(void* pool)
 81 {
 82     if(pool == NULL)
 83     {
 84         cout << "thread_routine params is empty, thread_exit" << endl;
 85         return NULL;
 86     }
 87     while(1)
 88     {
 89         thread_pool* p = (thread_pool*)pool;
 90         pthread_mutex_lock(&(p->pool_mutex));
 91         while(p->Pth_workQueue.empty() && !p->ShutDown)
 92         {
 93             pthread_cond_wait(&(p->pool_cond), &(p->pool_mutex));
 94         }
 95         if(p->ShutDown)
 96         {
 97             pthread_mutex_unlock(&(p->pool_mutex));
 98             return NULL;
 99         }
100         thread_work work_f;
101         work_f = p->Pth_workQueue.front();
102         p->Pth_workQueue.pop();
103         pthread_mutex_unlock(&(p->pool_mutex));
104         work_f.routine(work_f.arg);
105     }
106 }

代码都是基础知识,大家应该都能理解。

下面是一个测试的demo:

1 #include "ThreadPool.h"
 2 
 3 void* task(void* p)
 4 {
 5     int ptI = *(int*)p;
 6     //cout << "ptr address : " << p << "ptr value : " << ptI << endl;
 7     cout << ptI << endl;
 8     return NULL;
 9 }
10 
11 int main()
12 {
13     struct thread_pool* pool = thread_pool_create(100);
14     int iArg[1000];
15     for(int i = 0; i < 1000; i++)
16     {
17         iArg[i] = i;
18         thread_pool_add_task(pool, task, &iArg[i]);
19         //cout << "thread_pool_add_task id: " << iArg[i] << endl;
20         //cout << __FUNCTION__ << " success, current task id is: " << iArg[i]  << "iArg[" << i << "] address : " << &iArg[i]  << endl;
21     }
22     thread_pool_destroy(pool);    
23 }

小结

很简单很好理解的一段代码,我却写了大半天时间,手残党鉴定完毕。

LINUX下的简单线程池

时间: 2024-12-19 14:44:55

LINUX下的简单线程池的相关文章

在Linux下写一个线程池以及线程池的一些用法和注意点

-->线程池介绍(大部分来自网络)  在这个部分,详细的介绍一下线程池的作用以及它的技术背景以及他提供的一些服务等.大部分内容来自我日常生活中在网络中学习到的一些概念性的东西. -->代码(大约240行)  测试一下,具体的实现. -->代码下载 --------------------------------------------------------------------------------------------------------------------------

linux下c的线程池

参考网上实现下c的线程池 代码更新:https://github.com/ljfly/pool #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/types.h> #include <pthread.h> #include <assert.h> typedef struct worker { void *(*process) (void *

Linux下简单线程池的实现

线程池的技术背景 在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源.在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收.所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁.如何利用已有对象来服务(不止一个不同的任务)就是一个需要解决的关键问题,其实这就是一些"池化资源"技术产生的原因.比如大家所熟悉的数据库连接池正是遵循这一思想而产生的,本文将介绍的线程池技术同

Linux多线程实践(9) --简单线程池的设计与实现

线程池的技术背景 在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源.在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收.所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁.如何利用已有对象来服务(不止一个不同的任务)就是一个需要解决的关键问题,其实这就是一些"池化资源"技术产生的原因.比如大家所熟悉的数据库连接池正是遵循这一思想而产生的,本文将介绍的线程池技术同

Linux下一个简单的日志系统的设计及其C代码实现

1.概述 在大型软件系统中,为了监测软件运行状况及排查软件故障,一般都会要求软件程序在运行的过程中产生日志文件.在日志文件中存放程序流程中的一些重要信息, 包括:变量名称及其值.消息结构定义.函数返回值及其执行情况.脚本执行及调用情况等.通过阅读日志文件,我们能够较快地跟踪程序流程,并发现程序问题. 因此,熟练掌握日志系统的编写方法并快速地阅读日志文件,是对一个软件开发工程师的基本要求. 本文详细地介绍了Linux下一个简单的日志系统的设计方法,并给出了其C代码实现.本文为相关开发项目Linux

Linux 下进程与线程的基本概念

2019-10-01 关键字:进程.线程.信号量.互斥锁 什么是程序? 程序就是存放在磁盘上的指令和数据的有序集合,就是源代码编译产物. 它是静态的. 什么是进程? 进程就是操作系统为执行某个程序所分配的资源的总称.进程是程序的一次执行过程,因此它与程序不同,它是动态的.它的生命周期包括创建.调度.执行和消亡. 进程的内容主要包括以下三个部分: 1.正文段: 2.用户数据段: 3.系统数据段. 其中正文段与用户数据段两部分是从程序当中来的.而系统数据段则是操作系统分配的用来管理这个进程用的. 系

Linux下搭建简单的DHCP服务器

在RHEL6.5下搭建简单的DHCP服务器 实验目标 1.为192.168.10.0/24网段的客户机自动配置网络参数 用来给客户机自动分配地址的IP地址范围是:192.168.10.50-192.168.10.100.192.168.10.120-192.168.10.200 客户机的默认网关地址设为192.168.10.1 客户机所使用的DNS服务器设为202.106.0.20.8.8.8.8,默认域后缀是"tarena.com" 将默认租期设为2小时,最大租期设置为4小时 2.为

C++版简单线程池

需求 之前写过一个C#版本的简单线程池http://blog.csdn.net/ylbs110/article/details/51224979 由于刚刚学习了C++11新特性中的future,于是想到用它来实现一个线程池. 实现 思路基本和C#版本的一样,主要区别是委托的实现,线程句柄的不同和线程锁: 本来C++有function模板,但是实现起来比较麻烦,这里主要是实现线程池,所以动态参数的委托就不实现了,直接使用typedef void(*Func)();来实现一个无参数无返回值的函数指针

linux下最简单好用的的端口转发工具

linux下最简单好用的的端口转发工具官网地址 http://www.rinetd.com/软件下载wget http://www.rinetd.com/download/rinetd.tar.gz 解压安装tar zxvf rinetd.tar.gzmakemake install 编辑配置vi /etc/rinetd.conf0.0.0.0 8080 172.19.94.3 80800.0.0.0 2222 192.168.0.103 33891.2.3.4 80 192.168.0.10