C# 线程同步的三类情景

  C# 已经提供了我们几种非常好用的类库如 BackgroundWorker、Thread、Task等,借助它们,我们就能够分分钟编写出一个多线程的应用程序。

  比如这样一个需求:有一个 Winform 窗体,点击按钮后,会将窗体中的数据导出到一个 output.pdf 文件中。原先的代码没有采用多线程技术,所以当点击按钮后,整个窗体就变成无响应了。为了解决这个问题,可以使用 Task.Run(()=>{...导出文件的代码});

  上面的代码看似简单,却隐藏着种种危机。如果在导出的期间,窗体的数据被修改了,那会怎么样?如果多个窗体同时导出到同一个文件,又会怎么样?

  在看完本系列后,你就会清楚了。

  有点了解的朋友都知道线程同步有多种手段,什么 mutex、moniter、seamphore、event 等等,我把它们归为三类,对应三种需要线程同步的情景。

情景一:此茅坑有主了

  当一个资源同时被多个线程访问时,有可能会造成资源冲突(尤其是在存在多个写线程的时候)的情景。遇到这种情况,在 C# 中,我们可以使用 Interlocked、lock、Moniter、SpinLock、ReadWriteLockSlim、Mutex 来处理问题。

关于不同方案间的区别,请猛击这里

  什么情况下会被认为是情景一?

  当你设计的类中出现静态变量、IO操作时,就会遇到情景一。因为这些资源是由多个对象共享的,不同的线程很同时去访问这些资源时,就可能会出现争用。

  当一个类被设计成单例,且包含实例变量时,也会遇到情景一。因为实例变量属于这个单例,当多个线程操纵此单例时,该变量可能会被争用。

  当一个类中的方法调用线程操作某个实例变量时,也会遇到情景一。

情景二:数量有限,先到先得

  情景一强调的是一对多的情形,而在情景二中,资源的数量并不唯一。相比于情景一,情景二侧重的是数量上的限制。而用于实现这一需求的类有:Semaphore、SemaphoreSlim。

  关于不同方案间的区别,请猛击这里

  什么情况下会被认为是情景二?

  当所操作的公共资源存在并发数限制的时候(如数据库连接、IIS连接数限制等),就被认为是情景二。

情景三:我让你动,你才能动!

  情景三关注的是线程执行过程中的先后顺序,而用于保证这种先后顺序的方式就是通过线程通信的方式:ManualResetEventSlim、ManualResetEvent、AutoResetEvent。

  关于不同方案间的区别,请猛击这里

  什么情况下会被认为是情景三?

  当两个线程所处理的事情有先后的依赖时,比如线程二的执行过程依赖线程一的执行结果,那就认为是情景三。

不限使用情景

  上面的各种方案并不是绝对只限于某一场景,比如 AutoResetEvent 即可以用于情景三,也可以用于情景一。但是,杀鸡焉用牛刀,虽然使用 AutoResetEvent 能够实现情景一的需求,但是用不了 AutoResetEvent 的线程通信能力,同时又会有一些额外的限制(每个线程必须保证 wait 和 set 的成对使用,否则一个线程在锁定资源后就可能被另一个线程解锁)。

    lock (m)
    {
        //....
    }

    //等价于如下方式
    autoResetEvent.WaitOne();
    //....
    autoResetEvent.Set();

  也有朋友说,可以用情景一中的 lock 方案来实现情景三的需求。

    AutoResetEvent autoReset = new AutoResetEvent(false);
    private void button1_Click(object sender, EventArgs e)
    {
        Task.Run(() =>
        {
            autoReset.WaitOne();
            Console.WriteLine("步骤二");
        });

        Thread.Sleep(1000);//故意延迟从而保证第二个线程是在第一个线程之后才执行
        Task.Run(() =>
        {
            Console.WriteLine("步骤一");
            autoReset.Set();
        });
    }

  上面这个例子最终输出的结果可想而知。此实例说明,不管线程实际的执行顺序如何,AutoResetEvent 都能很容易的保证两个线程的执行顺序。

  如果用 lock 呢?

    private void button1_Click(object sender, EventArgs e)
    {
        Task.Run(() =>
        {
            lock (s)
            {
                Console.WriteLine("步骤一");
            }
        });

        Thread.Sleep(1000);//必须人为确保步骤二的线程要在步骤一的线程之后执行
        Task.Run(() =>
        {
            lock (s)
            {
                Console.WriteLine("步骤二");
            }
        });
    }

  虽然能实现,但是需要花费额外的代码去人为保证两个线程的执行顺序。

  如何在这么多方案中确定最终所使用的,需要你能对项目的各种情景进行分析,根据实际情景选择对应的方案,而不至于大材小用。

总 结

  通过本系列文章的介绍,希望让大家能对多线程中可能碰到的情景有一个概念,不至于在面临多线程的时候手忙脚乱。

作者:stg609

    本文转自:http://www.cnblogs.com/stg609/p/4052015.html

时间: 2024-11-05 03:20:13

C# 线程同步的三类情景的相关文章

线程同步的情景之二

情景一中,我主要介绍了用于解决资源争用时各种方式的区别,本篇文章我们将进一步介绍线程同步的第二种场景. 情景二:数量有限,先到先得   情景简介:与情景一类似,但是这次茅坑的数量不只一个.如果有需求的人数少于茅坑数量,那一切都很和谐.但是人数超过茅坑数量的时候该怎么办?多个人占用一个坑? 解决办法:当所有茅坑都客满的时候,其他人必须乖乖等在外面,只有当有人从里面出来的时候,下一个人才能进去. 问题抽象:当某一资源同一时刻允许一定数量的线程使用的时候,需要有个机制来阻塞多余的线程,直到资源再次变得

线程同步的情景之一

从本篇文章开始,我将陆续介绍多线程中会遇到的三种情况. 情景一:此茅坑有主了 大锤:“我擦,居然一个茅坑有两个人在用.” 大锤:“啊,忍不住了,一起挤挤吧~~~” 叫兽:“舒坦了,先走了.” 叫兽按下了冲水开关.... "哗啦啦....." 大锤:“你妹啊,冲什么水啊,冲得我一身 shit ” 解决方案:为了解决这种混乱的情况,管理员给茅坑加了道门,一次只允许一个人使用,其他人只能在外面等待.而且只要有人占着,就算不拉屎,其他人也只能乖乖排队. 问题抽象:当某一资源可能同时被多个线程读

线程同步的情景之三

在情景一.情景二中,我分别介绍了当多线程遇到 “资源争用”.“限量使用” 情形时的解决方案,本篇是本系列的最后一种情形,会介绍几种用于解决线程通信的方案. 情景三:我让你动,你才能动! 大锤:“老板,拿这个手机让我看看”. 大锤:“这是手机吗??? 分别就只是一个壳子”. 老板:“呀,这可能是生产上出了问题,我给你换一个!” 大锤:“老板,你这是当我是傻子呢?还是傻子呢?还是傻子呢? 这回给我的手机怎么没有电源啊!我要怎么开机啊!” 万万没想到,经过千挑万选,最终还是找到了一个配件完整的手机.

11.6 线程同步

11.6.1 互斥Example11.6.2 避免死锁Example11.6.3 pthread_mutex_timedlock 函数Example11.6.4Reader-Writer LocksExample11.6.5 带有超时功能的读写锁11.6.6 条件变量Example11.6.7 自旋锁11.6.8 BarriersExample 当多个线程控制流需要共享内存的时候,我们需要确保每一个线程所看到的数据是一致的.如果一个线程使用别的线程不会读取或者修改的数据,那么一致性问题并不会出现

第二章线程同步基础

Java 7 并发编程实战手册目录 代码下载(https://github.com/Wang-Jun-Chao/java-concurrency) 第二章线程同步基础 2.1简介 多个执行线程共享一个资源的情景,是最常见的并发编程情景之一.在并发应用中常常遇到这样的情景:多个线程读或者写相同的数据,或者访问相同的文件或数据库连接. 为了防止这些共享资源可能出现的错误或数据不一致,我们必须实现一些机制来防止这些错误的发生. 为了解决这些问题,引入了临界区(Critical Section)概念,临

【转】多线程:C#线程同步lock,Monitor,Mutex,同步事件和等待句柄(上)

本篇从Monitor,Mutex,ManualResetEvent,AutoResetEvent,WaitHandler的类关系图开始,希望通过 本篇的介绍能对常见的线程同步方法有一个整体的认识,而对每种方式的使用细节,适用场合不会过多解释.让我们来看看这几个类的关系图: 1.lock关键字      lock是C#关键词,它将语句块标记为临界区,确保当一个线程位于代码的临界区时,另一个线程不进入临界区.如果其他线程试图进入锁定的代码,则它将一直等待(即被阻止),直到该对象被释放.方法是获取给定

JAVA 并发编程-线程同步工具类(十二)

本文主要介绍一些java线程同步工具类,并不进行具体讲解,当有需要时,可以再去结合实例学习. 信号灯(Semaphore) 应用场景举例: 例如公司的打卡系统,如果有一个打卡机,那么一次就只能有一个人打卡,其余的人就被阻塞住,打卡完以后就可由下一个人打卡.如果有3个打卡机,那么一次就允许3个人或者少于三个人打卡,其余的人就得等待打卡机空闲下来才能继续打卡. 结果: 已进入1个线程,还可进入2个 已进入2个线程,还可进入1个 已进入3个线程,还可进入0个 空余出1个 已进入4个线程,还可进入0个

[.net]基元线程同步构造

1 /* 基元线程同步构造 2 用户模式构造: 3 易变构造(Volatile Construct) 4 互锁构造(Interlocked Construct):自旋锁(Spinlock) 乐观锁(Optimistic Concurrency Control,乐观并发控制) 5 内核模式构造: 6 事件构造(Event) 7 信号量构造(Semaphore) 8 互斥体构造(Mutex) 9 */ 10 11 //易变构造,Volatile.Write()之前的所有字段写入操作,必须再该方法调用

iOS多线程编程:线程同步总结 NSCondtion

1:原子操作 - OSAtomic系列函数 iOS平台下的原子操作函数都以OSAtomic开头,使用时需要包含头文件<libkern/OSBase.h>.不同线程如果通过原子操作函数对同一变量进行操作,可以保证一个线程的操作不会影响到其他线程内对此变量的操作,因为这些操作都是原子式的.因为原子操作只能对内置类型进行操作,所以原子操作能够同步的线程只能位于同一个进程的地址空间内. 2:锁 - NSLock系列对象 iOS平台下的锁对象为NSLock对象,进入锁通过调用lock函数,解锁调用unl