基于CCA的fMRI信号生理噪声抑制方法

第三章 基于CCA的fMRI信号生理噪声抑制方法

3.1 引言

  典型相关分析作为一种多元变量相关分析方法,可以用来提取出自相关的信号子空间,因而被广泛地用来做激活信号的提取及噪声成分的估计[48][55]。基于CCA,Churchill等人[10]提出了对fMRI残差数据做成分分解,进而估计出具有自相关特性的生理噪声成分,并在真实数据集上取得了较为显著的噪声抑制效果。但该方法需要先知道实验的刺激范式作为先验知识,然后去除fMRI信号中刺激范式相关的成分以得到残差数据。这里对功能信号与噪声信号进行分离,可以使得噪声成分子空间与功能信号子空间保持正交化,则所得残差数据中基本不包含功能激活信号,以防止由于对生理噪声的处理导致对BOLD响应信号的破坏。

为了能够实现对生理噪声盲分离的目的,基于Churchill等人在残差数据中提取生理噪声信号成分的思想,本章提出一种新的基于CCA的无监督生理噪声抑制方法。由于功能BOLD信号主要产生于灰质区域的大脑皮层,故该方法首先利用CCA从大脑灰质中粗略地提取得到一个大致的功能激活信号集,将其作为估计的实验刺激范式。然后,在全脑fMRI数据中利用GLM对上一步估计得到的实验刺激范式进行回归并去除与其相关的成分,以得到残差数据。最后,由于生理噪声主要作用于大脑的非神经区域,故利用CCA从残差数据对应的非神经组织区域提取出自相关的生理噪声集。这里得到的噪声成分能够与功能信号保持正交,并且具有较强的自相关特性。通过在真实fMRI数据上的实验分析,证明了该方法的有效性及可靠性。并且该方法无需心跳或呼吸等外部测量数据,也不需要已知任务刺激范式作为先验知识,因而具有灵活度高、成本低的优势。

3.2 CCA的基本思想

图3-1 CCA算法原理图示说明[64]

3.3 时域CCA的基本原理

  由于fMRI数据是一种包含时间维的四维数据集,同时包含时间域和空间域信息。故在具体分析时,CCA信号分析可分为时域CCA和空域CCA两种。而基于时域CCA可以很好地提取出时间自相关的信号成分[48],因而被广泛地用来做fMRI激活分析及噪声分离。时域CCA中数据矩阵的组成如图3-2(a)所示。

  图3-2 时域CCA算法模型[48]。(a) 时域CCA数据矩阵的组成,其中每一行代表一次样本观察得到的成分;(b) 在时域CCA中,y(t)一般是x(t)移动一步所得结果。

3.4 基于CCA的生理噪声抑制方法模型

  无监督生理噪声抑制方法一般需要考虑三个方面因素:一、受噪声干扰区域如何确定;二、如何从噪声干扰区域中估计和构造生理噪声子空间;三、采取何种机制对fMRI数据中的生理噪声进行抑制。首先针对第一个问题,利用本章3.5节实验部分的公式(3-15)所描述的方法构造非神经组织模板,相较于传统的基于脑脊液模板的方法在精度上具有一定的提升。之所以主要选取脑脊液区域作为噪声干扰区域,是因为脑脊液区域是大脑的非神经区域,会同时受到心脏和呼吸等噪声影响,基本没有与大脑皮质层神经活动相关的BOLD功能信号。此外,由于心跳或呼吸具有一定的周期性,因而具有较高的自相关性,而时域CCA在自相关成分的提取上具有一定优势。针对第二个问题,采取的解决办法是利用CCA从残差对应的非神经组织区域中提取若干显著性成分构造生理噪声集。最后,采用GLM从fMRI数据中抑制生理噪声相关成分,这一步在相关文献中一般称之为多余变量正则(Nuisance Variable Regression,NVR)。本章所提生理噪声抑制方法流程图,如图3-3所示。

图3-3 基于CCA的生理噪声抑制方法流程图

3.5 实验

  本章的视觉刺激实验数据利用SENSE 2T EPI扫描仪进行成像采集,数据分辨率为,体素的大小为,TR参数为2s。被试实验之前已被告知实验之目的,并签署同意书。作为一个任务态的数据,视觉刺激范式的模式为OFF–ON–OFF–ON–OFF–ON–OFF,每一个OFF–ON的block持续时间为20个TR,最后一个OFF阶段持续10个TR,所以共采集了70个时间点数据。在ON状态,被试会被要求盯住一副蓝黄相间的棋盘格画面,整幅画面以7Hz的频率进行翻转。实验刺激范式block如图3-4所示。

图3-4 实验刺激范式block

3.5.1 实验数据的预处理

本章实验数据的预处理主要基于SPM8工具箱,包含如下步骤:(1)首先,对被试的功能像数据进行刚体头动矫正,在此过程中会得到一个头动矫正后的功能平均像;(2)对被试的结构像和功能平均像进行协配准;(3)对协配准后的结构像进行组织分割提取脑脊液模板与灰质模板;(4)将被试头动矫正后的功能像配准到MNI空间;(5)对配准后的功能像数据按照全宽半高参数为8的高斯核进行平滑。

3.5.2 实验刺激范式的估计

首先,利用时域CCA方法对大脑灰质区域的数据进行自相关分析,提取出具有自相关结构的源信号成分。实验中发现偏移1至5个时间点所提取出的信号源成分差别不具有显著性,故本实验选取偏移1个时间点进行信号提取。提取的前三个自相关结构性最强的成分如图3-5所示,将此三个成分作为功能激活信号集。由图3-5可发现,其中第一个成分可认为是低频漂移信号成分,第二个信号成分与实验的刺激范式相似度较高,可认为是激活成分。

图3-5 CCA从灰质中提取的信号成分

3.5.3 非神经组织区域的噪声成分提取

图3-6 提取非神经组织模板示意图。(a) 非神经组织空域模板;(b) 非神经组织时域模板;(c) 空域模板与时域模板两者交集结果。图中脑壳内黑色部分为灰质区域,白色部分为脑脊液区域。

为得到残差数据,需要利用GLM从全脑fMRI数据中回归并去除掉估计的实验刺激范式。然后从残差数据对应的非神经组织区域(如图3-6(c)的区域)中,再利用CCA提取出自相关结构性较强的生理噪声集,如图3-7所示。

图3-7 CCA从残差数据对应的非神经组织区域中提取的噪声信号

3.5.4 实验结果

为验证本章所提出的生理噪声抑制方法对fMRI数据分析产生的差异影响,所以统一采用SPM来对视觉数据进行激活统计分析。而前期的预处理操作中,设置了经过生理噪声处理和不经过生理噪声处理的两个对照组数据。这里,SPM统计分析时的总体误差率p值设定为0.05,最小激活簇大小阈值设定为0。

在空域上,经过噪声抑制处理之后,大部分激活体素的位置仍保持不变,如图3-8所示。图3-8(a)为没有噪声抑制处理的数据经过SPM分析所得激活图,图3-8(b)为加入噪声抑制处理的数据经过SPM分析所得激活图。

图3-8 噪声抑制前后激活图对比。

(a)无噪声抑制处理的SPM所得激活图;(b)有噪声抑制处理的SPM所得激活图。

在图3-8中fMRI数据加入噪声抑制处理之后,在新激活图中减少的激活体素,主要是集中在原有激活区的边缘部分。而新增加的激活体素,主要是集中在原有激活区的中心区域。所以,经过生理噪声抑制处理后的数据所提取的激活区域,能更集中于大脑枕叶部分,而枕叶区域在医学上被认为是大脑控制视觉反应的区域。这在一定程度上说明,针对该视觉刺激实验数据,生理噪声的抑制处理操作能够突出视觉刺激实验的激活效果。

在时域上评价视觉任务态实验的分析效果时,可通过比较全部激活体素的平均时间过程与实验刺激范式之间的相似度,如图3-9所示。通过图3-9可表明,经过生理噪声抑制处理后,所提取激活体素的平均时间过程与时间刺激范式波形的相似度更高,二者的相关系数由0.4415升至0.5347。

图3-9 噪声抑制前后激活体素的平均时间过程对比

并且,计算每个激活体素与实验刺激范式之间的相关系数可得到激活体素的相关系数分布直方图,如图3-10所示。在图3-10中,原始数据所提取激活体素的相关系数分布是一个以0.45为均值的正太分布。而经过噪声抑制之后,相关系数分布整体向右倾斜,且分布更加集中,主要局限在0.3至0.6之间,与实验刺激范式相关性大的体素占整体大多数。

图3-10 噪声抑制前后激活体素时间过程与实验刺激范式相关系数分布。

(a)噪声抑制前激活体素相关系数分布;(b)噪声抑制后激活体素相关系数分布。

3.6 本章小结

本章提出了一种基于CCA结合fMRI信号在时间域与空间域上的综合特征,以抑制脑功能成像过程中的心跳和呼吸等生理噪声的方法。通过在真实fMRI数据上进行实验,表明了该方法能有效提高激活体素与任务刺激范式之间的相关性,进而提升后续数据激活检测方法的灵敏性。并且所提方法不需要任何实验先验信息,实现了对fMRI生理噪声的无监督抑制,具有成本低的优势。

谢谢我的导师曾先生,让我知道,读硕士、做学术不会投机是没有前途的,做任何事情没有RMB是没有出路的。

当时的我比较幼稚,还对学术充满了向往,还总以为自己在创造知识的新边疆,这些东西始终学不来。

所以,我是没有出路的,只能干干苦力。

那就好好做个苦力吧。

好好做个苦力。

本文单独的权限声明:未经许可,严禁任何形式的转载。

参考文献

[1] Ogawa S, Lee T M, Kay A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proceedings of the National Academy of Sciences, 1990, 87(24): 9868-9872.

[2] Kwong K K, Belliveau J W, Chesler D A, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation[J]. Proceedings of the National Academy of Sciences, 1992, 89(12): 5675-5679.

[3] Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusion imaging techniques[J]. Stroke, 2005, 36(9): e83-e99.

[4] Greve D N, Brown G G, Mueller B A, et al. A Survey of the Sources of Noise in fMRI[J]. Psychometrika, 2013, 78(3): 396-416.

[5] Della-Maggiore V, Chau W, Peres-Neto P R, et al. An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data[J]. Neuroimage, 2002, 17(1): 19-28.

[6] Ardekani B A, Bachman A H, Helpern J A. A quantitative comparison of motion detection algorithms in fMRI[J]. Magnetic resonance imaging, 2001, 19(7): 959-963.

[7] Buxton R B. Introduction to functional magnetic resonance imaging: principles and techniques[M]. Cambridge University Press, 2009.

[8] Glover G H, Li T Q, Ress D. Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR[J]. Magnetic Resonance in Medicine, 2000, 44(1): 162-167.

[9] Wang S J, Luo L M, Liang X Y, et al. Estimation and removal of physiological noise from undersampled multi-slice fMRI data in image space[C]//Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the. IEEE, 2006: 1371-1373.

[10] Churchill N W, Strother S C. PHYCAA+: An optimized, adaptive procedure for measuring and controlling physiological noise in BOLD fMRI[J]. NeuroImage, 2013, 82: 306-325.

[11] Lund T E, Madsen K H, Sidaros K, et al. Non-white noise in fMRI: does modelling have an impact?[J]. Neuroimage, 2006, 29(1): 54-66.

[12] Piaggi P, Menicucci D, Gentili C, et al. Adaptive filtering for removing nonstationary physiological noise from resting state fMRI BOLD signals[C]. Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on. IEEE, 2011: 237-241.

[13] Foster P S, Harrison D W. The covariation of cortical electrical activity and cardiovascular responding[J]. International journal of psychophysiology, 2004, 52(3): 239-255.

[14] Birn R M, Murphy K, Handwerker D A, et al. fMRI in the presence of task-correlated breathing variations[J]. Neuroimage, 2009, 47(3): 1092-1104.

[15] Birn R M, Smith M A, Jones T B, et al. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration[J]. Neuroimage, 2008, 40(2): 644-654.

[16] Chang C, Glover G H. Relationship between respiration, end-tidal CO 2, and BOLD signals in resting-state fMRI[J]. Neuroimage, 2009, 47(4): 1381-1393.

[17] Dagli M S, Ingeholm J E, Haxby J V. Localization of cardiac-induced signal change in fMRI[J]. Neuroimage, 1999, 9(4): 407-415.

[18] Perlbarg V, Bellec P, Anton J L, et al. CORSICA: correction of structured noise in fMRI by automatic identification of ICA components[J]. Magnetic resonance imaging, 2007, 25(1): 35-46.

[19] Birn R M, Diamond J B, Smith M A, et al. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI[J]. Neuroimage, 2006, 31(4): 1536-1548.

[20] Shmueli K, van Gelderen P, de Zwart J A, et al. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal[J]. Neuroimage, 2007, 38(2): 306-320.

[21] Smith A T, Singh K D, Balsters J H. A comment on the severity of the effects of non-white noise in fMRI time-series[J]. NeuroImage, 2007, 36(2): 282-288.

[22] Friston K J, Holmes A P, Worsley K J, et al. Statistical parametric maps in functional imaging: a general linear approach[J]. Human brain mapping, 1994, 2(4): 189-210.

[23] Friston K J, Jezzard P, Turner R. Analysis of functional MRI time‐series[J]. Human brain mapping, 1994, 1(2): 153-171.

[24] Friston K J, Holmes A P, Poline J B, et al. Analysis of fMRI time-series revisited[J]. Neuroimage, 1995, 2(1): 45-53.

[25] Triantafyllou C, Wald L L, Wiggins C J, et al. Physiological noise in fMRI: Comparison at 1.5 T, 3T and 7T and dependence on image esolution[C]//Proceedings of the 12th Annual Meeting of ISMRM, Kyoto, Japan. 2004: 1071.

[26] Yacoub E, De Moortele V, Shmuel A, et al. Signal and noise characteristics of  SE and GE BOLD fMRI at 7 T in humans[J]. Neuroimage, 2005, 24(3): 738-750.

[27] Geissler A, Gartus A, Foki T, et al. Contrast‐to‐noise ratio (CNR) as a quality parameter in fMRI[J]. Journal of Magnetic Resonance Imaging, 2007, 25(6): 1263-1270.

[28] Kruggel F, Von Cramon D Y, Descombes X. Comparison of filtering methods for fMRI datasets[J]. NeuroImage, 1999, 10(5): 530-543.

[29] Tanabe J, Miller D, Tregellas J, et al. Comparison of detrending methods for optimal fMRI preprocessing[J]. NeuroImage, 2002, 15(4): 902-907.

[30] Hu X, Kim S G. Reduction of physiological noise in functional MRI using navigator echo[J]. Magn. Reson. Med, 1994, 31: 495-503.

[31] Guimaraes A R, Melcher J R, Talavage T M, et al. Imaging subcortical auditory activity in humans[J]. Human brain mapping, 1998, 6(1): 33.

[32] Hu X, Le T H, Parrish T, et al. Retrospective estimation and correction of physiological fluctuation in functional MRI[J]. Magnetic resonance in medicine, 1995, 34(2): 201-212.

[33] Kang J K, Bénar C G, Al-Asmi A, et al. Using patient-specific hemodynamic response functions in combined EEG-fMRI studies in epilepsy[J]. Neuroimage, 2003, 20(2): 1162-1170.

[34] Ciuciu P, Poline J B, Marrelec G, et al. Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment[J]. Medical Imaging, IEEE Transactions on, 2003, 22(10): 1235-1251.

[35] Gitelman D R, Penny W D, Ashburner J, et al. Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution[J]. Neuroimage, 2003, 19(1): 200-207.

[36] Chang C, Cunningham J P, Glover G H. Influence of heart rate on the BOLD signal: the cardiac response function[J]. Neuroimage, 2009, 44(3): 857-869.

[37] Särkkä S, Solin A, Nummenmaa A, et al. Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER[J]. NeuroImage, 2012, 60(2): 1517-1527.

[38] Behzadi Y, Restom K, Liau J, et al. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI[J]. Neuroimage, 2007, 37(1): 90-101.

[39] Song X, Ji T, Wyrwicz A M. Baseline drift and physiological noise removal in high field fmri data using kernel pca[C].Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. IEEE, 2008: 441-444.

[40] Song X, Chen N K, Gaur P. Identification and attenuation of physiological noise in fMRI using kernel techniques[C]//Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE, 2011: 4852-4855.

[41] Rasmussen P M, Abrahamsen T J, Madsen K H, et al. Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation[J]. NeuroImage, 2012, 60(3): 1807-1818.

[42] Rodriguez P A, Correa N M, Eichele T, et al. Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI[J]. Journal of signal processing systems, 2011, 65(3): 497-508.

[43] Thomas C G, Harshman R A, Menon R S. Noise reduction in BOLD-based fMRI using component analysis[J]. Neuroimage, 2002, 17(3): 1521-1537.

[44] McKeown M J, Hansen L K, Sejnowsk T J. Independent component analysis of functional MRI: what is signal and what is noise?[J]. Current opinion in neurobiology, 2003, 13(5): 620-629.

[45] Starck T, Remes J, Nikkinen J, et al. Correction of low-frequency physiological noise from the resting state BOLD fMRI—Effect on ICA default mode analysis at 1.5 T[J]. Journal of neuroscience methods, 2010, 186(2): 179-185.

[46] Boubela R N, Kalcher K, Huf W, et al. Beyond noise: using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest[J]. Frontiers in human neuroscience, 2013, 7.

[47] Salimi-Khorshidi G, Douaud G, Beckmann C F, et al. Automatic Denoising of Functional MRI Data: Combining Independent Component Analysis and Hierarchical Fusion of Classifiers[J]. NeuroImage, 2014.

[48] Friman O, Borga M, Lundberg P, et al. Exploratory fMRI analysis by autocorrelation maximization[J]. NeuroImage, 2002, 16(2): 454-464.

[49] Borga M, Friman O, Lundberg P, et al. A canonical correlation approach to exploratory data analysis in fMRI[C]//Proceedings of the ISMRM Annual Meeting, Honolulu, Hawaii. 2002.

[50] Friman O, Borga M, Lundberg P, et al. Adaptive analysis of fMRI data[J]. NeuroImage, 2003, 19(3): 837-845.

[51] Nandy R, Cordes D. Improving the spatial specificity of canonical correlation analysis in fMRI[J]. Magnetic Resonance in Medicine, 2004, 52(4): 947-952.

[52] Li M, Liu Y, Feng G, et al. OI and fMRI signal separation using both temporal and spatial autocorrelations[J]. Biomedical Engineering, IEEE Transactions on, 2010, 57(8): 1917-1926.

[53] Zöllei L, Panych L, Grimason E, et al. Exploratory identification of cardiac noise in fMRI images[M]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003. Springer Berlin Heidelberg, 2003: 475-482.

[54] Churchill N W, Yourganov G, Spring R, et al. PHYCAA: data-driven measurement and removal of physiological noise in BOLD fMRI[J]. Neuroimage, 2012, 59(2): 1299-1314.

[55] 刘亚东, 胡德文, 周宗潭, 等. 功能磁共振数据结构性噪声分析[J]. 电子学报, 2007, 35(10): 1954-1960.

[56] Purdon P L, Weisskoff R M. Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI[J]. Human brain mapping, 1998, 6(4): 239-249.

[57] Woolrich M W, Ripley B D, Brady M, et al. Temporal autocorrelation in univariate linear modeling of FMRI data[J]. Neuroimage, 2001, 14(6): 1370-1386.

[58] Bullmore E, Long C, Suckling J, et al. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains[J]. Human brain mapping, 2001, 12(2): 61-78.

[59] Small M, Judd K. Detecting periodicity in experimental data using linear modeling techniques[J]. Physical Review E, 1999, 59(2): 1379.

[60] Frank L R, Buxton R B, Wong E C. Estimation of respiration‐induced noise fluctuations from undersampled multislice fMRI data†[J]. Magnetic Resonance in Medicine, 2001, 45(4): 635-644.

[61] Biswal B, Deyoe E A, Hyde J S. Reduction of physiological fluctuations in fMRI using digital filters[J]. Magnetic Resonance in Medicine, 1996, 35(1): 107-113.

[62] Ash T, Suckling J, Walter M, et al. Detection of physiological noise in resting state fMRI using machine learning[J]. Human brain mapping, 2011.

[63] Hotelling H. Canonical correlation analysis (cca)[J]. Journal of Educational Psychology, 1935.

[64] 肖柯, 苏敏, 吴飞. 基于 CCA 的 fMRI 时空模型数据处理的方法[J]. 重庆大学学报: 自然科学版, 2006, 29(5): 124-127.

[65] Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural computation, 1998, 10(5): 1299-1319.

[66] Mika S, Schölkopf B, Smola A J, et al. Kernel PCA and De-Noising in Feature Spaces[C]//NIPS. 1998, 11: 536-542.

[67] Auditory fMRI dataset: http://www.fil.ion.ucl.ac.uk/spm/data/auditory/.

[68] Welvaert M, Rosseel Y. How ignoring physiological noise can bias the conclusions from fMRI simulation results[J]. Journal of neuroscience methods, 2012, 211(1): 125-132.

[69] Wink A M, Roerdink J B T M. BOLD noise assumptions in fMRI[J]. International journal of biomedical imaging, 2006, 2006.

[70] Solo V, Noh J. An EM algorithm for Rician fMRI activation detection[C]//Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on. IEEE, 2007: 464-467.

[71] Strother S C, Anderson J, Hansen L K, et al. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework[J]. NeuroImage, 2002, 15(4): 747-771.

[72] Strother S, Oder A, Spring R, et al. The NPAIRS computational statistics framework for data analysis in neuroimaging[M]//Proceedings of COMPSTAT‘2010. Physica-Verlag HD, 2010: 111-120.

[73] Haxby J V, Gobbini M I, Furey M L, et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex[J]. Science, 2001, 293(5539): 2425-2430.

[74] Kelley D J, Oakes T R, Greischar L L, et al. Automatic physiological waveform processing for fMRI noise correction and analysis[J]. PloS one, 2008, 3(3): e1751.

[75] Brooks J C W, Beckmann C F, Miller K L, et al. Physiological noise modelling for spinal functional magnetic resonance imaging studies[J]. Neuroimage, 2008, 39(2): 680-692.

[76] Smith S M, Jenkinson M, Woolrich M W, et al. Advances in functional and structural MR image analysis and implementation as FSL[J]. Neuroimage, 2004, 23: S208-S219.

[77] Shijie W, Limin L, Weiping Z. Robust ordering of independent spatial components of fMRI data using canonical correlation analysis[M]//Image Analysis and Recognition. Springer Berlin Heidelberg, 2006: 672-679.

[78] Youssef T, Youssef A B M, LaConte S M, et al. Robust ordering of independent components in functional magnetic resonance imaging time series data using Canonical correlation analysis[C]//Medical Imaging 2003. International Society for Optics and Photonics, 2003: 332-340.

[79] McKeown M J, Makeig S, Brown G G, et al. Analysis of fMRI data by blind separation into independent spatial components[R]. NAVAL HEALTH RESEARCH CENTER SAN DIEGO CA, 1997.

[80] Jones T B, Bandettini P A, Birn R M. Integration of motion correction and physiological noise regression in fMRI[J]. Neuroimage, 2008, 42(2): 582-590.

[81] Triantafyllou C, Hoge R D, Wald L L. Effect of spatial smoothing on physiological noise in high-resolution fMRI[J]. Neuroimage, 2006, 32(2): 551-557.

[82] Churchill N W, Oder A, Abdi H, et al. Optimizing preprocessing and analysis pipelines for single‐subject fMRI. I. Standard temporal motion and physiological noise correction methods[J]. Human brain mapping, 2012, 33(3): 609-627.

时间: 2024-10-11 17:24:27

基于CCA的fMRI信号生理噪声抑制方法的相关文章

基于fMRI生理噪声抑制方法知识的应用研究

第六章 基于fMRI生理噪声抑制方法知识的应用研究 6.1 引言 生理噪声抑制研究的应用可分为两个方向,纵向研究应用和横向研究应用.将生理噪声抑制操作融入fMRI信号分析的预处理环节中,属于纵向研究应用.比如,Kelley等人[74]利用python编程语言编写的生理噪声处理工具包PhysioNoise:牛津大学功能磁共振研究中心推出的FSL(FMRIB Software Library)软件包[75]融入了生理噪声抑制预处理组件PNM(Physiological Noise Modelling

基于内置类的原型扩展方法

<!DOCTYPE html><html><head> <meta charset="UTF-8"> <title>基于内置类的原型扩展方法</title></head><body><script type="text/javascript"> var ary = [12, 23, 34, 12, 23, 34, 12, 23, 34, 12, 23, 34,

基于页面染色技术的内存数据库访问优化方法

本发明公开了一种基于页面染色技术的内存数据库访问优化方法.该方法首先将弱局部性数据集的所有数据页面的访问顺序按页面颜色进行排序,并将所有数据页面按页面颜色进行分组,然后按页面颜色分组的顺序扫描弱局部性数据集的所有数据页面.进一步地,预设若干具有相同页面颜色的内存页面作为页面颜色队列,该页面颜色队列用作内存页面被加载入CPU缓存之前的内存缓存:弱局部性数据集的数据页面首先通过异步方式进入页面颜色队列,然后再被加载到CPU缓存中完成数据处理.本发明能够解决内存数据库应用中无法依赖页面颜色为进程.线程

一种基于RBAC模型的动态访问控制改进方法

本发明涉及一种基于RBAC模型的动态访问控制改进方法,属于访问控制领域.对原有RBAC模型进行了权限的改进和约束条件的改进,具体为将权限分为静态权限和动态权限,其中静态权限是非工作流的权限,动态权限是工作流中的权限:将约束条件分为静态约束和动态约束,其中静态约束包括最小权限约束和职责分离约束,动态约束使动态权限按照工作流进行操作.采用本发明的方法改进后的RBAC模型具有以下优势:为传统的RBAC模型中增加了动态特性:跟纯动态模型相比较具有更高的效率:保证需要按顺序执行的权限能够按顺序执行,使得系

基于深度学习的图像语义分割方法综述

近年来,深度学习技术已经广泛应用到图像语义分割领域.主要对基于深度学习的图像语义分割的经典方法与研究现状进行分类.梳理和总结.根据分割特点和处理粒度的不同,将基于深度学习的图像语义分割方法分为基于区域分类的图像语义分割方法和基于像素分类的图像语义分割方法.把基于像素分类的图像语义分割方法进一步细分为全监督学习图像语义分割方法和弱监督学习图像语义分割方法.对每类方法的代表性算法进行了分析介绍,并详细总结了每类方法的基本思想和优缺点,系统地阐述了深度学习对图像语义分割领域的贡献.对图像语义分割相关实

Mahout实现一个基于性别的物品相似度量的方法GenderItemSimilarity

<span style="font-size:18px;">/*** * @author YangXin * @date 2016/2/18 * @info 一个基于性别的物品相似性度量 * 例如:对于两个男性或者两个女性档案非常相似,并设置它们的相似度为1.0. * 假定男性和女性的档案之间的相似度为 -1.0.最后一对档案中的一个或两个未知性别,则设为 0.0.  */ package unitFive; import java.util.Collection; imp

基于本体的语义信息模型的验证方法

一.先简单说说整个的一个需求吧 广义的配电管理系统(DMS)涵盖配电网生产.运行和服务全过程,是整个电力企业信息集成系统的一个有机组成部分.DMS 包含着大量应用系统,由于现在配网一体化和智能化发展的要求,需要这些应用系统之间能够相互的进行数据交换(实现系统间的互操作如下图),但这些大量的系统由于开发时间和功能的不一致,造成了这些系统和相应的数据库采用了不同的接口标准和模型,相对独立,不可避免的造成信息重叠和"信息孤岛",无法实现全局范围内的信息交互和信息共享. 目前,整个电网对此的解

基于Java的Jess功能函数扩展方法

Jess是Java expert system shell的缩写,是Java平台上的规则引擎,它是CLIPS程序设计语言的超集,是完全使用Java语言编写一种用于开发专家系统的语言.对于基于规则的推理,特别是针对逻辑条件的推理,Jess是已知规则引擎中最快的.它以增强型Rete算法为基础,支持前向推理,也支持后向推理,具有直接对Java对象进行推理,支持对工作存储区的查询访问等特点[1-2]. Jess语言本身提供了很多功能强大的函数供专家系统开发者调用,但这些函数不可能囊括一切功能和运算,若仅

基于微软XAML技术的前端开发方法

使用XAML技术的平台目前包括WPF,Silverlight,Windows8等平台,未来的Windows10统一Windows App也使用XAML技术. 前端开发指通过可视化集成开发环境进行用户界面的设计和实现,结合手动编写XML界面描述代码,完成表现层开发的过程.基于XAML技术的前端开发使用的开发环境是Blend,输出是XAML代码.由于目前版本的Blend 2013存在一些问题,需要和VS配合使用.Blend 2015进行了重大改进,较好地解决了各种问题,但还未发布正式版. 下面总结一