VC维的物理意义

VC维的物理意义的相关文章

6 VC维

1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个样本打散:假设空间的VC维就是它能打散的最大样本数目N.若对任意数目的样本都有函数能将它们打散,则函数集的VC维是无穷大: 几种假设空间的VC维如下: 2 感知机的VC维 d维感知机的vc维是d+1.(证明略) 3 VC维的物理意义 VC维表示的是做二分类时假设空间的自由度,是把数据集打散的能力.

【机器学习基础】VC维与模型复杂度、样本复杂度

引言 上一小节,我们引入了VC维的概念,用它来描述假设集合的表达能力.这一小节中,我们将从VC维的物理意义出发,进一步学习如何根据VC维传达的信息来选择模型和假设集合. VC维的物理意义 如果我们将假设集合的数量|H|比作假设集合的自由度,那么VC维就是假设集合在做二元分类的有效的自由度,即这个假设空间能够产生多少Dichotomies的能力(VC维说的是,到什么时候,假设集合还能shatter,还能产生最多的Dichotomies). VC维.真实错误率.训练错误率 在上一节中,我们讨论要做到

机器为什么可以学习(3)----vc维

1.主要内容 上节课讲述了vc bound,表明了在去break point为最小的break point时,mH(N)的上限是vc bound是一个多项式级别的上限: vc维定义为当输入数据为N个点时,有一个假设空间H可以准确无误的将这N个点所有的分类情况都覆盖,那么假设空间的H的vc维就是N,当一个假设空间H维有限(霍夫丁不等式的上限的参数mH(N)为有限的,因此bad的概率就会变得很小)时,当数据输入量够大(即霍夫丁不等式中的参数N,当N越大时,霍夫丁的上限就越小)时,学习就是可能的. 2

FFT结果的物理意义

图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度.如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低:而对 于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高.傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱.从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的.从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域.换句话说,

关于卷积的血腥实例、本质及物理意义

作为一名苦逼工科生,<信号与系统>+<数字信号处理>是绕不过去的坎,各种让人头疼的概念与数学公式:傅里叶变化.拉普拉斯变化.Z变换.卷积.循环卷积.自相关.互相关.离散傅里叶变化.离散傅里叶时间变化-- 前一段时间在知乎发现一个有趣例子,生动形象地解释了卷积的物理意义,且解释的较为准确,下面,正文来了: 比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系

解读机器学习基础概念:VC维的来龙去脉

原作者:vincentyao  原文链接: http://dataunion.org/14581.html 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC维在机器学习领域是一个很基础的概念,它给诸多机器学习方法的可学

[综] 卷积的物理意义

卷积的物理意义是什么? https://www.zhihu.com/question/21686447?nr=1 果程C 他夏了夏天 1740 人赞同了该回答 对于初学者,我推荐用复利的例子来理解卷积可能更直观一些: 小明存入100元钱,年利率是5%,按复利计算(即将每一年所获利息加入本金,以计算下一年的利息),那么在五年之后他能拿到的钱数是,如下表所示:将这笔钱存入银行的一年之后,小明又往银行中存入了100元钱,年利率仍为5%,那么这笔钱按复利计算,到了第五年,将收回的钱数是,我们将这一结果作

卷积的本质及物理意义(全面理解卷积)

卷积的本质及物理意义(全面理解卷积) 卷积的本质及物理意义 提示:对卷积的理解分为三部分讲解1)信号的角度2)数学家的理解(外行)3)与多项式的关系 1 来源 卷积其实就是为冲击函数诞生的.“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号.古人曰:“说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明“冲击函数”.在t时间内对一物体作用F的力,倘若作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变.于是在用t做横坐标.F做纵坐标的坐标系中,就如同一个面积不变的长方形,

漫谈高数 特征向量物理意义

[1. 特征的数学意义]        我们先考察一种线性变化,例如x,y坐标系的椭圆方程可以写为x^2/a^2+y^2/b^2=1,那么坐标系关于原点做旋转以后,椭圆方程就要发生变换.我们可以把原坐标系的(x,y)乘以一个矩阵,得到一个新的(x',y')的表示形式,写为算子的形式就是(x,y)*M=(x',y').这里的矩阵M代表一种线性变换:拉伸,平移,旋转.那么,有没有什么样的线性变换b(b是一个向量),使得变换后的结果,看起来和让(x,y)*b像是一个数b乘以了一个数字m*b? 换句话说