Hello TensorFlow

官方说明:https://www.tensorflow.org/install/

环境:

操作系统 :Windows 10 家庭中文版

处理器 : Intel(R) Core(TM) i7-7700 CPU @3.6GHZ 3.60GHZ

内存 :16GB

显卡:NVIDIA GeForce GTX 1060 6GB

Python:3.6.2

安装CPU版

pip3 install --upgrade tensorflow

验证安装:

中间出现了告警:机器支持AVX指令集,安装的版本没有使用AVX指令集编译,如果使用AVX指令集可以提高CPU计算速度。

安装gpu版的tensorflow成功了,但是验证失败。需要进一步分析原因。

时间: 2024-10-01 05:04:19

Hello TensorFlow的相关文章

在Win10 Anaconda中安装Tensorflow

有需要的朋友可以参考一下 1.安装Anaconda 下载:https://www.continuum.io/downloads,我用的是Python 3.5 下载完以后,安装. 安装完以后,打开Anaconda Prompt,输入清华的仓库镜像,更新包更快: conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_url

Tensorflow 梯度下降实例

# coding: utf-8 # #### 假设我们要最小化函数 $y=x^2$, 选择初始点 $x_0=5$ # #### 1. 学习率为1的时候,x在5和-5之间震荡. # In[1]: import tensorflow as tf TRAINING_STEPS = 10 LEARNING_RATE = 1 x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x") y = tf.square(x) train_op

Ubuntu16.04安装tensorflow+安装opencv+安装openslide+安装搜狗输入法

Ubuntu16.04在cuda以及cudnn安装好之后,安装tensorflow,tensorflow以及opencv可以到网上下载对应的安装包并且直接在安装包所在的路径下直接通过pip与conda进行安装,如下图所示: 前提是要下载好安装包.安装好tensorflow之后还需要进行在~/.bashrc文件中添加系统路径,如下图所示 Openslide是医学图像一个重要的库,这里给出三条命令进行安装 sudo apt-get install openslide-tools sudo apt-g

【tensorflow:Google】三、tensorflow入门

[一]计算图模型 节点是计算,边是数据流, a = tf.constant( [1., 2.] )定义的是节点,节点有属性 a.graph 取得默认计算图 g1 = tf.get_default_graph() 初始化计算图 g1 = tf.Graph() 设置default图 g1.as_default() 定义变量: tf.get_variable('v') 读取变量也是上述函数 对图指定设备 g.device('/gpu:0') 可以定义集合来管理计算图中的资源, 加入集合 tf.add_

TensorFlow之tf.unstack学习循环神经网络中用到!

unstack( value, num=None, axis=0, name='unstack' ) tf.unstack() 将给定的R维张量拆分成R-1维张量 将value根据axis分解成num个张量,返回的值是list类型,如果没有指定num则根据axis推断出! DEMO: import tensorflow as tf a = tf.constant([3,2,4,5,6]) b = tf.constant([1,6,7,8,0]) c = tf.stack([a,b],axis=0

TensorFlow conv2d实现卷积

tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关的一共五个参数: 第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, i

Tensorflow一些常用基本概念与函数(四)

摘要:本系列主要对tf的一些常用概念与方法进行描述.本文主要针对tensorflow的模型训练Training与测试Testing等相关函数进行讲解.为'Tensorflow一些常用基本概念与函数'系列之四. 1.序言 本文所讲的内容主要为以下列表中相关函数.函数training()通过梯度下降法为最小化损失函数增加了相关的优化操作,在训练过程中,先实例化一个优化函数,比如 tf.train.GradientDescentOptimizer,并基于一定的学习率进行梯度优化训练: optimize

Tensorflow一些常用基本概念与函数(三)

摘要:本系列主要对tf的一些常用概念与方法进行描述.本文主要针对tensorflow的数据IO.图的运行等相关函数进行讲解.为'Tensorflow一些常用基本概念与函数'系列之三. 1.序言 本文所讲的内容主要为以下相关函数: 操作组 操作 Data IO (Python functions) TFRecordWrite,rtf_record_iterator Running Graphs Session management,Error classes 2.tf函数 2.1 数据IO {Da

TensorFlow【机器学习】:如何正确的掌握Google深度学习框架TensorFlow(第二代分布式机器学习系统)?

本文标签:   机器学习 TensorFlow Google深度学习框架 分布式机器学习 唐源 VGG REST   服务器 自 2015 年底开源到如今更快.更灵活.更方便的 1.0 版本正式发布,由 Google 推出的第二代分布式机器学习系统 TensorFlow一直在为我们带来惊喜,一方面是技术层面持续的迭代演进,从分布式版本.服务框架 TensorFlow Serving.上层封装 TF.Learn 到 Windows 支持.JIT 编译器 XLA.动态计算图框架 Fold 等,以及

机器学习进阶笔记之一 | TensorFlow安装与入门

原文链接:https://zhuanlan.zhihu.com/p/22410917 TensorFlow 是 Google 基于 DistBelief 进行研发的第二代人工智能学习系统,被广泛用于语音识别或图像识别等多项机器深度学习领域.其命名来源于本身的运行原理.Tensor(张量)意味着 N 维数组,Flow(流)意味着基于数据流图的计算,TensorFlow 代表着张量从图象的一端流动到另一端计算过程,是将复杂的数据结构传输至人工智能神经网中进行分析和处理的过程. -- 由 UCloud