Spark布隆过滤器(bloomFilter)

数据过滤在很多场景都会应用到,特别是在大数据环境下。在数据量很大的场景实现过滤或者全局去重,需要存储的数据量和计算代价是非常庞大的。很多小伙伴第一念头肯定会想到布隆过滤器,有一定的精度损失,但是存储性能和计算性能可以达到几何级别的提升。很多第三方框架也实现了相应的功能,比如hbase框架实现的布隆过滤器性能是非常的棒,redis也可以实现相应的功能。这些需要借助于第三方框架,需要维护第三方框架。如果公司没有部署相应架构,单独为使用布隆过滤器部署一套集群,代价还是非常大的。

我们在做流式计算时需要实现数据小时级别去重和天级别数据去重,初始功能版本使用的是基于redis实现的布隆过滤器。性能也非常的好,三个节点的redis集群(三主三从,主从交叉策略)性能可以达到每秒十几万的处理性能。在后期的使用中主要瓶颈就在redis的吞吐量的性能上。一直想在这块做一定的性能优化。

后来,发现spark官方封装了基于DataFrame的布隆过滤器,使用起来相当方便。性能不再受制于第三方框架的吞吐量限制,依赖于spark的并行资源。可以减少架构设计的复杂度,提高可维护性。在流式计算应用中可以将布隆过滤器做成driver级别的全局变量,在batch结束更新布隆过滤器。如果考虑容错,可以将布隆过滤器数据定期持久化到磁盘(hdfs/redis)。

直接上代码,看一下使用方法

 val bf = df.stat.bloomFilter("dd",dataLen,0.01)
 val rightNum = rdd.map(x=>(x.toInt,bf.mightContainString(x)))

首先,在生成布隆过滤器直接调用bloomFilter(colName:String,expectedNumItems:Long,fpp:Double)就可以了,第一个参数是使用的数据列,第二个参数是数据量期望会有多少,第三个参数是损失精度。损失精度越低生成的布隆数组长度就会越长,占用的空间就会越多,计算过程就会越漫长。

在用有些场景布隆过滤器还需要合并,官方也提供了相应的API

   mergeInPlace(BloomFilter var1):BloomFilter

判定数据是否存在,官方一共提供了四个方法:

    mightContain(Object var1),

    mightContainString(String val1),

    mightContainLong(long var1),

    mightContainBinary(byte[] var1)

不同的方法适用于不同的类型,bloomFilter(calname:String...)这个方法中使用列的数据类型一定要和以上四个方法对应,否则会出问题。

官方还很贴心的提供了序列化和反序列化工具:writeTo和readFrom,可以很方便的将布隆过滤器序列化到磁盘和从磁盘加载布隆过滤器。

原文地址:https://www.cnblogs.com/itboys/p/11109478.html

时间: 2024-10-07 17:22:29

Spark布隆过滤器(bloomFilter)的相关文章

网络爬虫:URL去重策略之布隆过滤器(BloomFilter)的使用

前言: 最近被网络爬虫中的去重策略所困扰.使用一些其他的"理想"的去重策略,不过在运行过程中总是会不太听话.不过当我发现了BloomFilter这个东西的时候,的确,这里是我目前找到的最靠谱的一种方法. 如果,你说URL去重嘛,有什么难的.那么你可以看完下面的一些问题再说这句话. 关于BloomFilter: Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员.如果检测

Hbase 布隆过滤器BloomFilter介绍

1.主要功能 提高随机读的性能 2.存储开销 bloom filter的数据存在StoreFile的meta中,一旦写入无法更新,由于StoreFile是不可变的.Bloomfilter是一个列族(cf)级别的配置属性,假设你在表中设置了Bloomfilter,那么HBase会在生成StoreFile时包括一份bloomfilter结构的数据,称其为MetaBlock:MetaBlock与DataBlock(真实的KeyValue数据)一起由LRUBlockCache维护.所以,开启bloomf

crapy 去重与 scrapy_redis 去重与 布隆过滤器

目录 scrapy 的去重 scrapy-redis 去重 自定义过滤 布隆过滤器 在开始介绍 scrapy 的去重之前,先想想我们是怎么对 requests 对去重的. requests 只是下载器,本身并没有提供去重功能.所以我们需要自己去做. 很典型的做法是事先定义一个去重队列,判断抓取的 url 是否在其中,如 crawled_urls = set() def check_url(url): if url not in crawled_urls: return True return F

第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中

第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲-将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定.链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢.不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构.它可以通过一

布隆过滤器(Bloom Filter)的原理和实现

什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, gmail等邮箱垃圾邮件过滤功能 这几个例子有一个共同的特点: 如何判断一个元素是否存在一个集合中? 常规思路 数组 链表 树.平衡二叉树.Trie Map (红黑树) 哈希表 虽然上面描述的这几种数据结构配合常见的排序.二分搜索可以快速高效的处理绝大部分判断元素是否存在集合中的需求.但是当集合里

布隆过滤器的简易实现

布隆过滤器(Bloom Filter): 是由布隆(Burton Howard Bloom)提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器用于检索一个元素是否在一个集合中.底层是利用哈希表来实现的,它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点.这样一来,我们只要看看这个点是不是 1 就知道可以集合中有没有它了.这就是布隆过滤器的基本思想. 优点:空间效率和查询时间相比于其他数据结构有很大的优势 缺点:有一定的误识别率,删除困难

剖析布隆过滤器

布隆过滤器(Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一元素存在于某集合中,但是实际上该元素并不在集合中)和删除困难,但是没有识别错误的情形(即假反例False negatives,如果某个元素确

Bloom filter(布隆过滤器)概念与原理

写在前面 在大数据与云计算发展的时代,我们经常会碰到这样的问题.我们是否能高效的判断一个用户是否访问过某网站的主页(每天访问量上亿)或者需要统计网站的pv.uv.最直接的想法是将所有的访问者存起来,然后每次用户访问的时候与之前集合进行比较.不管是将访问信息存在内存(或数据库)都会对服务器造成非常大的压力.那是否存在一种方式,容忍一定的错误率,高效(计算复杂度.空间复杂度)的实现访问量信息的跟踪.统计呢?接下来介绍的布隆过滤器(BloomFilter)就可以满足当前的使用场景(注释:基数计数法同样

位图&布隆过滤器

位图定义: 利用位的状态来存放一个数是否存在,其实就是把一个数映射成一个简单的数用以标记他是否存在,一般使用情况为查找一个数是否存在. 数据结构: 1/8=0    1%8=1   1<<1(第二个bit位置1) 2/8=0    2%8=2   1<<2(第3个bit位置1) 3/8=0    3%8=3  1<<3(第4个bit位置1) 4/8=0    .... 查找这个数是否存在: 先算出这个数的存在位置,然后找这个位置是否为1,如果是则存在否则不存在. 缺点: