Redis的LRU算法
LRU算法背后的的思想在计算机科学中无处不在,它与程序的"局部性原理"很相似。在生产环境中,虽然有Redis内存使用告警,但是了解一下Redis的缓存使用策略还是很有好处的。下面是生产环境下Redis使用策略:最大可用内存限制为4GB,采用 allkeys-lru 删除策略。所谓删除策略:当redis使用已经达到了最大内存,比如4GB时,如果这时候再往redis里面添加新的Key,那么Redis将选择一个Key删除。那如何选择合适的Key删除呢?
CONFIG GET maxmemory
1) "maxmemory"
2) "4294967296"CONFIG GET maxmemory-policy
1) "maxmemory-policy"
2) "allkeys-lru"
在官方文档Using Redis as an LRU cache描述中,提供了好几种删除策略,比如 allkeys-lru、volatile-lru等。在我看来按选择时考虑三个因素:随机、Key最近被访问的时间 、Key的过期时间(TTL)
比如:allkeys-lru,"统计一下所有的"Key历史访问的时间,把"最老"的那个Key移除。注意:我这里加了引号,其实在redis的具体实现中,要统计所有的Key的最近访问时间代价是很大的。想想,如何做到呢?
evict keys by trying to remove the less recently used (LRU) keys first, in order to make space for the new data added.
再比如:allkeys-random,就是随机选择一个Key,将之移除。
evict keys randomly in order to make space for the new data added.
再比如:volatile-lru,它只移除那些使用 expire 命令设置了过期时间的Key,根据LRU策略来移除。
evict keys by trying to remove the less recently used (LRU) keys first, but only among keys that have an expire set, in order to make space for the new data added.
再比如:volatile-ttl,它只移除那些使用 expire 命令设置了过期时间的Key,哪个Key的 存活时间(TTL KEY 越小)越短,就优先移除。
evict keys with an expire set, and try to evict keys with a shorter time to live (TTL) first, in order to make space for the new data added.
既然有这么多策略,那我用哪个好呢?这就涉及到Redis中的Key的访问模式了(access-pattern),access-pattern与代码业务逻辑相关,比如说符合某种特征的Key经常被访问,而另一些Key却不怎么用到。如果所有的Key都可能机会均等地被我们的应用程序访问,那它的访问模式服从均匀分布;而大部分情况下,访问模式服从幂指分布(power-law distribution),另外Key的访问模式也有可能是随着时间变化的,因此需要一种合适的删除策略能够catch 住 (捕获住)各种情形。而在幂指分布下,LRU是一种很好的策略:
While caches can’t predict the future, they can reason in the following way: keys that are likely to be requested again are keys that were recently requested often. Since usually access patterns don’t change very suddenly, this is an effective strategy.
Redis中LRU策略的实现
最直观的想法:LRU啊,记录下每个key 最近一次的访问时间(比如unix timestamp),unix timestamp最小的Key,就是最近未使用的,把这个Key移除。看下来一个HashMap就能搞定啊。是的,但是首先需要存储每个Key和它的timestamp。其次,还要比较timestamp得出最小值。代价很大,不现实啊。
第二种方法:换个角度,不记录具体的访问时间点(unix timestamp),而是记录idle time:idle time越小,意味着是最近被访问的。
The LRU algorithm evicts the Least Recently Used key, which means the one with the greatest idle time.
比如A、B、C、D四个Key,A每5s访问一次,B每2s访问一次,C和D每10s访问一次。(一个波浪号代表1s),从上图中可看出:A的空闲时间是2s,B的idle time是1s,C的idle time是5s,D刚刚访问了所以idle time是0s
这里,用一个双向链表(linkedlist)把所有的Key链表起来,如果一个Key被访问了,将就这个Key移到链表的表头,而要移除Key时,直接从表尾移除。
It is simple to implement because all we need to do is to track the last time a given key was accessed, or sometimes this is not even needed: we may just have all the objects we want to evict linked in a linked list.
但是在redis中,并没有采用这种方式实现,它嫌LinkedList占用的空间太大了。
By modifying a bit the Redis Object structure I was able to make 24 bits of space. There was no room for linking the objects in a linked list (fat pointers!)
毕竟,并不需要一个完全准确的LRU算法,就算移除了一个最近访问过的Key,影响也不太。
To add another data structure to take this metadata was not an option, however since LRU is itself an approximation of what we want to achieve, what about approximating LRU itself?
最初Redis是这样实现的:
随机选三个Key,把idle time最大的那个Key移除。后来,把3改成可配置的一个参数,默认为N=5:maxmemory-samples 5
when there is to evict a key, select 3 random keys, and evict the one with the highest idle time
就是这么简单,简单得让人不敢相信了,而且十分有效。但它还是有缺点的,但它还是有缺点的:每次随机选择的时候,并没有利用历史信息。在每一轮移除(evict)一个Key时,随机从N个里面选一个Key,移除idle time最大的那个Key;下一轮又是随机从N个里面选一个Key...有没有想过:在上一轮移除Key的过程中,其实是知道了N个Key的idle time的情况的,那我能不能在下一轮移除Key时,利用好上一轮知晓的一些信息?
However if you think at this algorithm across its executions, you can see how we are trashing a lot of interesting data. Maybe when sampling the N keys, we encounter a lot of good candidates, but we then just evict the best, and start from scratch again the next cycle.
start from scratch太傻了。于是Redis又做出了改进:采用缓冲池(pooling)
当每一轮移除Key时,拿到了这个N个Key的idle time,如果它的idle time比 pool 里面的 Key的idle time还要大,就把它添加到pool里面去。这样一来,每次移除的Key并不仅仅是随机选择的N个Key里面最大的,而且还是pool里面idle time最大的,并且:pool 里面的Key是经过多轮比较筛选的,它的idle time 在概率上比随机获取的Key的idle time要大,可以这么理解:pool 里面的Key 保留了"历史经验信息"。
Basically when the N keys sampling was performed, it was used to populate a larger pool of keys (just 16 keys by default). This pool has the keys sorted by idle time, so new keys only enter the pool when they have an idle time greater than one key in the pool or when there is empty space in the pool.
至此,基于LRU的移除策略就分析完了。Redis里面还有一种基于LFU(访问频率)的移除策略,后面有时间再说。
参考链接:
最近,在生产环境上对某一微服务部署了多份,多个client并发访问同一份数据,造成了数据的重复计算,需要分布式锁解决这个问题。看了下redis 的 transaction documention 以及redis distlock,在结尾发现《design data intensive applications》的作者写了一篇文章 how-to-do-distributed-locking分析了使用redis实现分布式锁的缺陷:严重依赖于计算机时钟的"准确性",而在分布式环境下,本地时钟是不可靠的,因此使用redis作为分布式锁在某些条件下(比如网络延时)违反了锁的一个性质:安全性。作者给出的解决方案是每次修改数据时比较 fencing token,这种使用 fencing token 的思路非常类似于MySQL里面的"乐观锁"实现方式,即:都是基于"数据版本号"判断是否发生了冲突。此外,martin kleppmann 还建议如果是使用分布式锁保证安全性,那么最好使用基于Zookeeper实现分布式锁,由zookeeper的高可用性保证分布式锁的可用性。
有趣的是,redlock的作者也写了一篇文章 Is Redlock safe?作为回应martin kleppmann的质疑,读完之后相信对分布式锁会有一个更好的理解。不禁感叹读官方文档、英文原文可以极大提高理解技术本质的效率,一篇好的文章真的能节约很多时间。好了,不说了,说多了我就怀疑自己写的东西了^~^。
最后,再扯一点与本文不相关的东西:关于数据处理的一些思考:
5G有能力让各种各样的节点都接入网络,就会产生大量的数据,如何高效地处理这些数据、挖掘数据(机器学习、深度学习)背后的隐藏的模式是一件非常有趣的事情,因为这些数据其实是人类行为的客观反映。举个例子,微信运动的计步功能,会让你发现:哎,原来每天我的活动量大概保持在1万步左右。再深入一步,以后各种工业设备、家用电器,都会产生各种各样的数据,这些数据是社会商业活动的体现,也是人类活动的体现。如何合理地利用这些数据呢?现有的存储系统能支撑这些数据的存储吗?有没有一套高效的计算系统(spark or tensorflow...)分析出数据中隐藏的价值?另外,基于这些数据训练出来的算法模型应用之后会不会带来偏见?有没有滥用数据?网上买东西有算法给你推荐,刷朋友圈会给你投针对性的广告,你需要借多少钱,贷多少款也会有模型评估,看新闻、看娱乐八卦也有算法推荐。你每天看到的东西、接触的东西,有很多很多都是这些"数据系统"做的决策,它们真的公平吗?在现实中如果你犯了错,有老师、朋友、家人给你反馈、纠正,你改了,一切还可以从头开始。可在这些数据系统之下呢?有纠错反馈机制吗?会不会刺激人越陷越深?就算你很正直、有良好的信用,算法模型也可能存在概率偏差,这是不是影响人类"公平竞争"的机会?这些都是数据开发人员值得思考的问题。
原文:https://www.cnblogs.com/hapjin/p/10933405.html
原文地址:https://www.cnblogs.com/hapjin/p/10933405.html