怎么选取训练神经网络时的Batch size?

怎么选取训练神经网络时的Batch size? - 知乎
https://www.zhihu.com/question/61607442

深度学习中的batch的大小对学习效果有何影响? - 知乎
https://www.zhihu.com/question/32673260

训练神经网络时如何确定batch size? - 夕小瑶的文章 - 知乎
https://zhuanlan.zhihu.com/p/27763696

如何理解深度学习分布式训练中的large batch size与learning rate的关系? - 谭旭的回答 - 知乎
https://www.zhihu.com/question/64134994/answer/216895968

如何理解深度学习分布式训练中的large batch size与learning rate的关系? - 龙鹏-言有三的回答 - 知乎
https://www.zhihu.com/question/64134994/answer/675171937

原文地址:https://www.cnblogs.com/lzida9223/p/10972744.html

时间: 2024-10-08 18:04:45

怎么选取训练神经网络时的Batch size?的相关文章

stanford coursera 机器学习编程作业 exercise4--使用BP算法训练神经网络以识别阿拉伯数字(0-9)

在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出

如何选取一个神经网络中的超参数hyper-parameters

1.什么是超参数 所谓超参数,就是机器学习模型里面的框架参数.比如聚类方法里面类的个数,或者话题模型里面话题的个数等等,都称为超参数.它们跟训练过程中学习的参数(权重)是不一样的,通常是手工设定的,经过不断试错来调整,或者对一系列穷举出来的参数组合一通枚举(叫做网格搜索).深度学习和神经网络模型,有很多这样的参数需要学习. 2.一些启发式规则 在实际应用中,当你使用神经网络去解决问题时,很难找到好的超参数.假设我们现在正在处理MINIST数据库的问题,并且对超参数是如何使用的一无所知.假设我们大

从零开始:教你如何训练神经网络

原文链接 :https://zhuanlan.zhihu.com/p/31953880 选自TowardsDataScience 作者:Vitaly Bushaev 机器之心编译 作者从神经网络简单的数学定义开始,沿着损失函数.激活函数和反向传播等方法进一步描述基本的优化算法.在理解这些基础后,本文详细描述了动量法等当前十分流行的学习算法.此外,本系列将在后面介绍 Adam 和遗传算法等其它重要的神经网络训练方法. I. 简介 本文是作者关于如何「训练」神经网络的一部分经验与见解,除了神经网络的

新颖训练方法——用迭代投影算法训练神经网络

作者介绍:Jesse Clark 研究相位恢复的物理学家.数据科学家,有着丰富的建设网站与设计手机应用的经验,在创业公司有着丰富的经验,对创业有着极大的热情. Github: https://github.com/jn2clark Linkedin:http://www.linkedin.com/in/j3ss3cl4rk 相位恢复(PR)关心的是在给定幅度信息以及受到实空间限制下,找到复值函数(通常在傅立叶空间中)的相位[1]. PR是一个非凸优化问题,已经成为大量工作[1,2,3,4,5,6

利用GPU和Caffe训练神经网络

利用GPU和Caffe训练神经网络 摘要:本文为利用GPU和Caffe训练神经网络的实战教程,介绍了根据Kaggle的“奥托集团产品分类挑战赛”的数据进行训练一种多层前馈网络模型的方法,如何将模型应用于新数据,以及如何将网络图和训练权值可视化. [编者按]本文为利用GPU和Caffe训练神经网络的实战教程,介绍了根据Kaggle的“奥托集团产品分类挑战赛”的数据进行训练一种多层前馈网络模型的方法,如何将模型应用于新数据,以及如何将网络图和训练权值可视化. Caffe是由贾扬清发起的一个开源深度学

Spark Streaming中动态Batch Size深入及RateController解析

本期内容 : BatchDuration与 Process Time 动态Batch Size Spark Streaming中有很多算子,是否每一个算子都是预期中的类似线性规律的时间消耗呢? 例如:join操作和普通Map操作的处理数据的时间消耗是否会呈现出一致的线性规律呢,也就是说,并非数据量规模越大就是简单加大BatchDuration 就可以解决问题的,数据量是一个方面,计算的算子也是一个考量的因素. 使用BatchSize来适配我们的流处理程序 : 线上的处理程序越来越重要,流入的数据

使用Keras训练神经网络备忘录

使用Keras训练神经网络备忘录 小书匠 深度学习 文章太长,放个目录: 1.优化函数的选择 2.损失函数的选择 2.2常用的损失函数 2.2自定义函数 2.1实践 2.2将损失函数自定义为网络层 3.模型的保存 3.1同时保持结构和权重 3.2模型结构的保存 3.3模型权重的保存 3.5选择网络层载入 4.训练历史的保存 4.1检测运行过程的参数 4.2保持训练过程得到的所有数据 5.陷阱:validation_split与shuffle 1.优化函数的选择 先写结论,后面再补上每个优化函数的

吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.01 LEARNING_RATE_DECAY = 0.

使用Google Colab训练神经网络(二)

Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果.它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.Colaboratory 笔记本存储在 Google 云端硬盘 (https://drive.google.com/) 中,并且可以共享,就如同您使用 Google 文档或表格一样.Colaboratory 可免费使用.本文介绍如何使用 Google CoLaboratory 训练神经网络. 工具链接:https:/