分布式锁与实现(一)——基于Redis实现

概述

目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。

在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。

选用Redis实现分布式锁原因

  • Redis有很高的性能
  • Redis命令对此支持较好,实现起来比较方便

在此就不介绍Redis的安装了,具体在Linux和Windows中的安装可以查看我前面的博客。
http://www.cnblogs.com/liuyang0/p/6504826.html

使用命令介绍

SETNX

SETNX key val
当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。

expire

expire key timeout
为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。

delete

delete key
删除key

在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。

实现

使用的是jedis来连接Redis。

实现思想

  • 获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
  • 获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
  • 释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。

分布式锁的核心代码如下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Transaction;
import redis.clients.jedis.exceptions.JedisException;

import java.util.List;
import java.util.UUID;

/**
 * Created by liuyang on 2017/4/20.
 */
public class DistributedLock {
    private final JedisPool jedisPool;

    public DistributedLock(JedisPool jedisPool) {
        this.jedisPool = jedisPool;
    }

    /**
     * 加锁
     * @param locaName  锁的key
     * @param acquireTimeout  获取超时时间
     * @param timeout   锁的超时时间
     * @return 锁标识
     */
    public String lockWithTimeout(String locaName,
                                  long acquireTimeout, long timeout) {
        Jedis conn = null;
        String retIdentifier = null;
        try {
            // 获取连接
            conn = jedisPool.getResource();
            // 随机生成一个value
            String identifier = UUID.randomUUID().toString();
            // 锁名,即key值
            String lockKey = "lock:" + locaName;
            // 超时时间,上锁后超过此时间则自动释放锁
            int lockExpire = (int)(timeout / 1000);

            // 获取锁的超时时间,超过这个时间则放弃获取锁
            long end = System.currentTimeMillis() + acquireTimeout;
            while (System.currentTimeMillis() < end) {
                if (conn.setnx(lockKey, identifier) == 1) {
                    conn.expire(lockKey, lockExpire);
                    // 返回value值,用于释放锁时间确认
                    retIdentifier = identifier;
                    return retIdentifier;
                }
                // 返回-1代表key没有设置超时时间,为key设置一个超时时间
                if (conn.ttl(lockKey) == -1) {
                    conn.expire(lockKey, lockExpire);
                }

                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            }
        } catch (JedisException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                conn.close();
            }
        }
        return retIdentifier;
    }

    /**
     * 释放锁
     * @param lockName 锁的key
     * @param identifier    释放锁的标识
     * @return
     */
    public boolean releaseLock(String lockName, String identifier) {
        Jedis conn = null;
        String lockKey = "lock:" + lockName;
        boolean retFlag = false;
        try {
            conn = jedisPool.getResource();
            while (true) {
                // 监视lock,准备开始事务
                conn.watch(lockKey);
                // 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁
                if (identifier.equals(conn.get(lockKey))) {
                    Transaction transaction = conn.multi();
                    transaction.del(lockKey);
                    List<Object> results = transaction.exec();
                    if (results == null) {
                        continue;
                    }
                    retFlag = true;
                }
                conn.unwatch();
                break;
            }
        } catch (JedisException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                conn.close();
            }
        }
        return retFlag;
    }
}

测试

下面就用一个简单的例子测试刚才实现的分布式锁。
例子中使用50个线程模拟秒杀一个商品,使用--运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。

模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。

import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

/**
 * Created by liuyang on 2017/4/20.
 */
public class Service {
    private static JedisPool pool = null;

    static {
        JedisPoolConfig config = new JedisPoolConfig();
        // 设置最大连接数
        config.setMaxTotal(200);
        // 设置最大空闲数
        config.setMaxIdle(8);
        // 设置最大等待时间
        config.setMaxWaitMillis(1000 * 100);
        // 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的
        config.setTestOnBorrow(true);
        pool = new JedisPool(config, "127.0.0.1", 6379, 3000);
    }

    DistributedLock lock = new DistributedLock(pool);

    int n = 500;

    public void seckill() {
        // 返回锁的value值,供释放锁时候进行判断
        String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
        System.out.println(Thread.currentThread().getName() + "获得了锁");
        System.out.println(--n);
        lock.releaseLock("resource", indentifier);
    }
}

// 模拟线程进行秒杀服务

public class ThreadA extends Thread {
    private Service service;

    public ThreadA(Service service) {
        this.service = service;
    }

    @Override
    public void run() {
        service.seckill();
    }
}

public class Test {
    public static void main(String[] args) {
        Service service = new Service();
        for (int i = 0; i < 50; i++) {
            ThreadA threadA = new ThreadA(service);
            threadA.start();
        }
    }
}

结果如下,结果为有序的。

若注释掉使用锁的部分

public void seckill() {
    // 返回锁的value值,供释放锁时候进行判断
    //String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
    System.out.println(Thread.currentThread().getName() + "获得了锁");
    System.out.println(--n);
    //lock.releaseLock("resource", indentifier);
}

从结果可以看出,有一些是异步进行的。

在分布式环境中,对资源进行上锁有时候是很重要的,比如抢购某一资源,这时候使用分布式锁就可以很好地控制资源。
当然,在具体使用中,还需要考虑很多因素,比如超时时间的选取,获取锁时间的选取对并发量都有很大的影响,上述实现的分布式锁也只是一种简单的实现,主要是一种思想。

下一次我会使用zookeeper实现分布式锁,使用zookeeper的可靠性是要大于使用redis实现的分布式锁的,但是相比而言,redis的性能更好。

上面的代码可以在我的GitHub中进行查看,地址如下:
https://github.com/yangliu0/DistributedLock

原文地址:https://www.cnblogs.com/yt999/p/8618497.html

时间: 2024-11-10 09:38:47

分布式锁与实现(一)——基于Redis实现的相关文章

分布式锁的实现【基于ZooKeeper】

引言 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护.域名服务.分布式同步.组服务等. ZooKeeper的架构通过冗余服务实现高可用性.因此,如果第一次无应答,客户端就可以询问另一台ZooKeeper主机.ZooKeeper节点将它们的数据存储于一个分层的命名空间,非常类似于一个文件系统或一个前缀树结构.客户端可以在节点读写,

分布式锁的几种使用方式(redis、zookeeper、数据库)

Q:一个业务服务器,一个数据库,操作:查询用户当前余额,扣除当前余额的3%作为手续费synchronizedlockdb lockQ:两个业务服务器,一个数据库,操作:查询用户当前余额,扣除当前余额的3%作为手续费分布式锁我们需要怎么样的分布式锁?可以保证在分布式部署的应用集群中,同一个方法在同一时间只能被一台机器上的一个线程执行. 这把锁要是一把可重入锁(避免死锁) 这把锁最好是一把阻塞锁(根据业务需求考虑要不要这条) 这把锁最好是一把公平锁(根据业务需求考虑要不要这条) 有高可用的获取锁和释

4、redis 分布式锁

1. 前言 关于分布式锁的实现,目前常用的方案有以下三类: 数据库乐观锁: 基于分布式缓存实现的锁服务,典型代表有 Redis 和基于 Redis 的 RedLock: 基于分布式一致性算法实现的锁服务,典型代表有 ZooKeeper.Chubby 和 ETCD. 关于 Redis 实现分布式锁,网上可以查到很多资料,笔者最初也借鉴了这些资料,但是,在分布式锁的实现和使用过程中意识到这些资料普遍存在问题,容易误导初学者,鉴于此,撰写本文,希望为对分布式锁感兴趣的读者提供一篇切实可用的参考文档.

SpringBoot电商项目实战 — Redis实现分布式锁

最近有小伙伴发消息说,在Springboot系列文第二篇,zookeeper是不是漏掉了?关于这个问题,其实我在写第二篇的时候已经考虑过,但基于本次系列文章是实战练习,在项目里你能看到Zookeeper相关内容的也只有dubbo注册地址了.因为Zookeeper在项目中,我们不需要做任何配置和代码,只需要在服务器上安装一个Zookeeper应用即可. 包括对Zookeeper的依赖,我们在SpringBoot项目中只需要依赖Dubbo就ok了.在本次系列实战中,我是本着少说多动手的原则,如果有些

常用的分布式锁和redis和zk两种分布式锁的对比

常用的分布式锁 一..基于数据库实现分布式锁 1. 悲观锁 利用select … where … for update 排他锁 注意: 其他附加功能与实现一基本一致,这里需要注意的是“where name=lock ”,name字段必须要走索引,否则会锁表.有些情况下,比如表不大,mysql优化器会不走这个索引,导致锁表问题. 2. 乐观锁 所谓乐观锁与前边最大区别在于基于CAS思想,是不具有互斥性,不会产生锁等待而消耗资源,操作过程中认为不存在并发冲突,只有update version失败后才

基于Redis的简单分布式锁的原理

参考资料:https://redis.io/commands/setnx 加锁是为了解决多线程的资源共享问题.Java中,单机环境的锁可以用synchronized和Lock,其他语言也都应该有自己的加锁机制.但是到了分布式环境,单机环境中的锁就没什么作用了,因为每个节点只能获取到自己机器内存中的锁,而无法获取到其他节点的锁状态. 分布式环境中,应该用专门的分布式锁来解决需要加锁的问题.分布式锁有很多实现,Redis,zookeeper都可以.这里以Redis为例,讲述一下基于Redis的分布式

python基于redis实现分布式锁

阅读目录 什么事分布式锁 基于redis实现分布式锁 一.什么是分布式锁 我们在开发应用的时候,如果需要对某一个共享变量进行多线程同步访问的时候,可以使用我们学到的锁进行处理,并且可以完美的运行,毫无Bug! 注意这是单机应用,后来业务发展,需要做集群,一个应用需要部署到几台机器上然后做负载均衡,大致如下图: 上图可以看到,变量A存在三个服务器内存中(这个变量A主要体现是在一个类中的一个成员变量,是一个有状态的对象),如果不加任何控制的话,变量A同时都会在分配一块内存,三个请求发过来同时对这个变

基于Redis的分布式锁和Redlock算法

1 前言 前面写了4篇Redis底层实现和工程架构相关文章,感兴趣的读者可以回顾一下: Redis面试热点之底层实现篇-1 Redis面试热点之底层实现篇-2 Redis面试热点之工程架构篇-1 Redis面试热点之工程架构篇-2 今天开始来和大家一起学习一下Redis实际应用篇,会写几个Redis的常见应用. 在我看来Redis最为典型的应用就是作为分布式缓存系统,其他的一些应用本质上并不是杀手锏功能,是基于Redis支持的数据类型和分布式架构来实现的,属于小而美的应用. 结合笔者的日常工作,

身为一枚优秀的程序员必备的基于Redis的分布式锁和Redlock算法

1 前言 今天开始来和大家一起学习一下Redis实际应用篇,会写几个Redis的常见应用. 在我看来Redis最为典型的应用就是作为分布式缓存系统,其他的一些应用本质上并不是杀手锏功能,是基于Redis支持的数据类型和分布式架构来实现的,属于小而美的应用. 结合笔者的日常工作,今天和大家一起研究下基于Redis的分布式锁和Redlock算法的一些事情. 2.初识锁 1. 锁的双面性 现在我们写的程序基本上都有一定的并发性,要么单台多进线程.要么多台机器集群化,在仅读的场景下是不需要加锁的,因为数