dijkstra算法:寻找到全图各点的最短路径

dijkstra算法介绍:即迪杰斯特拉算法,是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止,是一种广度优先的搜索方法。

dijkstra算法原理:最优子路径存在。假设从S→E存在一条最短路径SE,且该路径经过点A,那么可以确定SA子路径一定是S→A的最短路径。证明:反证法。如果子路径SA不是最短的,那么就必然存在一条更短的‘SA,从而SE路径也就不是最短,与原假设矛盾。

dijkstra算法缺点:与此前说过的viterbi不同,此算法能够求出从起点到其余每个结点的最短路径,所以需要遍历所有的路径和结点,计算复杂度比较大。

dijkstra算法例子:求从结点0到各个结点的最短路径。

step1:首先建立两个集合S={}:表示已经找到最短路径的结点;U={}:表示尚未找到最短路径的结点。显然,S与U互为补集,S U U=所有结点组成的集合,当U为空的时候算法结束,所有结点最短路径均已找到。

step2:建立一个数组dist[i],用于存放起点0到该结点i的最短路径(可能需要更新,接下来会解释)。然后再建立一个布尔数组s[i](初值均为0),用于表示该结点是否已经找到最短路径,如已经找到便不再遍历。

step3:具体执行部分:

A:初始点设定。对于结点0,首先将其纳入到S集合中,然后寻找并计算与结点0直接相连路径的长度,即dist[1]=100,dist[30]=2,dist[4]=10(这时dist[0]=0)。而不能直接到达的结点距离为无限大∞。这里使用dist[3]=99999,方便程序比较大小。然后使s[0]=1,表示已经遍历过该结点。

B:选取最小dist[i]。比较dist[1],dist[3],dist[4]的长度,选择长度最短的dist[4],并将结点4纳入到S集合中,令s[4]=1,表明0到4的最短路径已经找到,且值为10。原因:最优子路径存在原理。由于dist[1],dist[3]均大于dist[4],所以若选择走经过结点1、3到达结点4路径,无论如何也不可能找到一条小于直接从结点0到结点4的路径!这个结论非常非常非常重要,是理解这个算法的关键!后面会反复用到,每一轮循环都要比较并选取最小的dist[i]。

C:更新dist[i]。现在,我们开始以结点4为中心向外扩展(广度优先)。现在,结点4可以到达结点3了,也表明从结点0可以通过结点4到达结点3了。至于要更新dist[i]的原因如下图:

在第一次选择中,我们纳入了起点A,然后由于dist[C]=6<dist[B]=20,我们又纳入了C点。这时,我们发现我们还可以通过C点到达B点,所以我们必须比较dist[B]与dist[C]+|CB|的大小。这以下这个例子中,显然6+7=13<20,所以dist[B]需要从20更新成13。所以,我们不难发现:每纳入一个新的结点,我们都需要比较由这个结点新扩展出来结点所生成路径与原来路径的长度。

step4:重复上述步骤B、C,直到U集合清空,s[i]中所有值均为1。这就表明图中所有点都找到了最短路径。

下面放出以上例子的步骤表,如果能理解就表明基本了解dijkstra算法的思想了。

最后,从结点0到各个点的最短路径就都算出来了。

dijkstra算法重点:理解为何需要选取最小的dist[i];理解为何需要更新dist[i]。

作者:俊爷拒做学渣
链接:https://www.jianshu.com/p/c9b27617502e

原文地址:https://www.cnblogs.com/Tangent-1231/p/8477852.html

时间: 2024-10-04 05:09:31

dijkstra算法:寻找到全图各点的最短路径的相关文章

dijkstra算法--寻找最短路径

转自https://blog.csdn.net/heroacool/article/details/51014824 基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离). 初始时,S中只有起点s:U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径".然后,从U中找出路径最短的顶点,

利用Dijkstra算法实现记录每个结点的所有最短路径

最近在做PAT时发现图论的一些题目需要对多条最短路径进行筛选,一个直接的解决办法是在发现最短路径的时候就进行判断,选出是否更换路径:另一个通用的方法是先把所有的最短路径记录下来,然后逐个判断.前者具有一定的难度并且不好排查BUG,因此我设计了一种基于Dijkstra的记录所有最短路的简捷算法,用于解决此类题目. 我们知道,Dijkstra是解决单源最短路问题的,并且最基本的算法仅能求出最短路的长度,而不能输出路径,本文基于Dinjkstra进行改进,使之能记录源点到任意点的所有最短路径. 使用v

Dijkstra 算法寻找最短路径 较简易

反正觉得比书上的代码简单多了 主要的一些核心代码还是参考上一篇博客的,觉得那篇的Dij写的不错,值得细细品味 注释的话看上篇博客,vim不知道怎么注释 #include<iostream> using namespace std ; const int maxint = 999 ; const int maxnum = 100 ; int dist[maxnum] ; int pre[maxnum] ; int c[maxnum][maxnum] ; void Dij(int number ,

最短路径算法-Dijkstra算法的应用之单词转换(词梯问题)

一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine-->mine..... 那么,就存在这样一个问题:给定一个单词作为起始单词(相当于图的源点),给定另一个单词作为终点,求从起点单词经过的最少变换(每次变换只会变换一个字符),变成终点单词. 这个问题,其实就是最短路径问题. 由于最短路径问题中,求解源点到终点的最短路径与求解源点到图中所有顶点的最短路径复

Dijkstra算法(迪杰斯塔拉算法)

算法描述: Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低. Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等. 其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合.一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知.

最短路径(Dijkstra算法)

当用图结构来表示通信.交通等网络,权重代表距离或者成本,寻找最短路径就成为了一个重要的任务. 给定带权网络G=(V;E),源点s,对于其他所有顶点v,寻找s到v的最短路径,连接成一颗最短路径树.可以证明,最短路径的任一前缀也是最短路径. 这一性质,可以理解为,对于一颗最短路径树,按到起点的距离排序,删除后面k个顶点以及关联边后,残存的子树T'依然是最短路径树.因此,只需要找到一个新的距离源点s最近的顶点,即可扩充子树,最终成为全图的最短路径树. 考虑优先级搜索的框架,当前顶点尚未发现的邻接顶点,

ACM: HDU 2544 最短路-Dijkstra算法

HDU 2544最短路 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗? Input 输入包括多组数据.每组数据第一行是两个整数N.M(N<=100,M<

邻接表实现Dijkstra算法以及DFS与BFS算法

//============================================================================ // Name : ListDijkstra.cpp // Author : fffff // Version : // Copyright : Your copyright notice // Description : Hello World in C++, Ansi-style //==========================

Dijkstra算法(求解单源最短路)详解 + 变形 之 poj 1860 Currency Exchange

/* 求解单源最短路问题:Dijkstra算法(该图所有边的权值非负) 关键(贪心): (1)找到最短距离已经确定的节点,从它出发更新与其相邻节点的最短距离: (2)此后不再关心(1)中“最短距离已经确定的节点”. 时间复杂度(大概的分析,不准确): “找到最短距离已经确定的节点” => O(|V|) "从它出发更新与其相邻节点的最短距离" => 邻接矩阵:O(|V|),邻接表:O(|E|) 需要循环以上两个步骤V次,所以时间复杂度:O(V^2) 即:在|E|较小的情况下,