先用求回文串的Manacher算法,求出以第i个点和第i+1个点为中心的回文串长度,记录到数组c中 比如 10 9 8 8 9 10 10 9 8 我们通过运行Manacher求出第i个点和第i+1个点为中心的回文串长度 0 0 6 0 0 6 0 0 0
两个8为中心,10 9 8 8 9 10是个回文串,长度是6。 两个10为中心,8 9 10 10 9 8是个回文串,长度是6。
要满足题目所要求的内容,需要使得两个相邻的回文串,共享中间的一部分,比如上边的两个字符串,共享 8 9 10这一部分。 也就是说,左边的回文串长度的一半,要大于等于共享部分的长度,右边回文串也是一样。 因为我们已经记录下来以第i个点和第i+1个点为中心的回文串长度, 那么问题可以转化成,相距x的两个数a[i],a[i+x],满足a[i]/2>=x 并且 a[i+x]/2>=x,要求x尽量大
这可以用一个set维护,一开始集合为空,依次取出a数组中最大的元素,将其下标放入set中,每取出一个元素,再该集合中二分查找 <= i+a[i]/2,但最大的元素,更新答案。 然后查找集合中 >= i-a[i]/2,但最小的元素,更新答案。
答案就是3*an
Hotaru‘s problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1384 Accepted Submission(s): 498
Problem Description
Hotaru Ichijou recently is addicated to math problems. Now she is playing with N-sequence.
Let‘s define N-sequence, which is composed with three parts and satisfied with the following condition:
1. the first part is the same as the thrid part,
2. the first part and the second part are symmetrical.
for example, the sequence 2,3,4,4,3,2,2,3,4 is a N-sequence, which the first part 2,3,4 is the same as the thrid part 2,3,4, the first part 2,3,4 and the second part 4,3,2 are symmetrical.
Give you n positive intergers, your task is to find the largest continuous sub-sequence, which is N-sequence.
Input
There are multiple test cases. The first line of input contains an integer T(T<=20), indicating the number of test cases.
For each test case:
the first line of input contains a positive integer N(1<=N<=100000), the length of a given sequence
the second line includes N non-negative integers ,each interger is no larger than 109 ,
descripting a sequence.
Output
Each case contains only one line. Each line should start with “Case #i: ”,with i implying the case number, followed by a integer, the largest length of N-sequence.
We guarantee that the sum of all answers is less than 800000.
Sample Input
1 10 2 3 4 4 3 2 2 3 4 4
Sample Output
Case #1: 9
Source
2015 Multi-University Training Contest 7
#include <bits/stdc++.h> using namespace std; #define prt(k) cerr<<#k" = "<<k<<endl typedef long long ll; const ll inf = 0x3f3f3f3f; const int N = 101000; int str[N],ans[N<<1]; int p[N<<1],pos,how; int n; void manacher() { pos=-1;how=0; memset(p,0,sizeof(p)); int len=2*n+2; int mid=-1,mx=-1; for(int i=0;i<len;i++) { int j=-1; if(i<mx) { j=2*mid-i; p[i]=min(p[j],mx-i); } else p[i]=1; while(i+p[i]<len&&ans[i+p[i]]==ans[i-p[i]]) { p[i]++; } if(p[i]+i>mx) { mx=p[i]+i; mid=i; } if(p[i]>how) { how=p[i]; pos=i; } } } void pre() { memset(ans,0,sizeof ans); ans[0] = -1; ans[1] = -2; for (int i=0;i<n;i++) { ans[2*i+2] = str[i]; ans[2*i+3] = -2; } ans[2*n+2] = 0; manacher(); for (int i=3;i<2*n+2;i+=2) { p[(i-3)/2] = (p[i] - 1) / 2; } } struct P { int a, id; }; P a[N<<1]; bool cmp(P a, P b) { return a.a > b.a; } int main() { int re; scanf("%d", &re); int ca = 1; while (re--) { scanf("%d", &n); for (int i=0;i<n;i++) scanf("%d", &str[i]); printf("Case #%d: ", ca++); if (n < 3) { puts("0"); continue; } pre(); int ans = 0; for (int i=0;i<n;i++) { // printf("p[%d] = %d\n", i, p[i]); a[i].a = p[i]; a[i].id = i; } set<int> se; sort(a, a+n, cmp); for (int i=0;i<n;i++) { auto it = se.upper_bound(a[i].id+a[i].a); if (it != se.begin() ) { it--; if(*it - a[i].id <= a[i].a); ans = max(ans, *it - a[i].id); } it = se.lower_bound(a[i].id - a[i].a); if (it != se.end()) { ans = max(ans, a[i].id - *it); } se.insert(a[i].id); } printf("%d\n", 3*ans); } return 0; } /** 34 9 10 9 8 8 9 10 10 9 8 */
版权声明:本文为博主原创文章,未经博主允许不得转载。
HDU 5371 Hotaru's problem